e
3y
|

‘,/ AndroWish

Executive Summary

Tcl (Tool Command Language) is a very powerful but easy to learn dynamic programming
language, suitable for a very wide range of uses, including web and desktop applications,
networking, administration, testing and many more. Open source and business-friendly, Tcl
is a mature yet evolving language that is truly cross platform, easily deployed and highly
extensible.

Tk is a graphical user interface toolkit that takes developing desktop applications to a higher
level than conventional approaches. Tk is the standard GUI not only for Tcl, but for many ‘;
other dynamic languages, and can produce rich, native applications that run unchanged \\)

o

across Windows, Mac OS X, Linux and more.

AndroWish allows to run desktop Tcl and Tk programs almost unaltered on the Android
Platform while it opens the door to script a rich feature set of a mobile platform. Its sibling
undroidwish uses the same code base and offers a similar feature set on various desktop
and embedded platforms.

Quick Links

Tcl/Tk 8.6 manual,

ble, borg, dmtx, modbus, muzic, rfcomm, sdltk, snap?, tclcan, topcua, usbserial, uvc, wmf, v412,

zbar, zipfs,
list of extensions, list of releases, environment, undroidwish, undroidwish command line switches

Documentation

PDF booklet for eBook readers, excerpt of this wiki

Development AndroWish SDK, building#1, building#2, building#3, examples

AndroWish-debug.apk for armeabi and x86

Downloads AndroWish64-debug.apk for armeabi-v7a, arm64-v8a, and x86
These are experimental Android packages which are updated more frequently when the LUCK
. binaries are rebuilt.
Experimental AndroWish-debug.apk (Architectures armeabi and x86)
AndroWish64-debug.apk (Architectures armeabi-v7a, arm64-v8a, and x86_64)
Features
e Native Tcl/Tk 8.6 port for Android (version 4.0 or above) available for ARM and x86 processors.
e Top goal: execute existing Tcl/Tk scripts on Android without modification.
e Based on Tim Baker's earlier SDLTk project.
e X11 emulation based on AGG (Anti-Grain-Geometry) and SDL 2.0.
e Provides anti-aliased rendering of lines, circles, arcs.
e Font rendering using freetype font engine. Starting with the "Back to the Future (2015-10-21)" release, Unicode

8.0 is fully supported and Emojis can be displayed (and input with the on-screen keyboard on newer Android

devices).
e Includes the 3D canvas widget which uses an OpenGL to OpenGLES 1.1 emulation for drawing on the Android
platform.

e Includes the tkpath widget, an enhanced canvas with SVG like capabilities, anti-aliased rendering, alpha channel,

and TrueType outline fonts.

Mounts its constituting APK (Android package) using a built-in ZIP virtual file system as a memory mapped file.

"Batteries Included" packaging like TclKits, i.e. many ready-to-use Tcl extensions are already bundled.

Some Android specific facilities are exposed through SDL and usable with the sdltk command.

Tcl commands are available to use even more Android specific facilities: borg command, ble command, rfcomm

command, usbserial command.

Some Android specific things are exposed through Environment Variables.

A MIDI sound package is built in and described in Muzic MIDI sound package.

An experimental rendering mode allows to use it with VR headsets like Google's cardboard.

Many example scripts are built into the AndroWish package.

Building AndroWish requires the Android SDK and Android NDK. A detailed description by Harald Oehlmann is

available in Build custom Androwish.

A new approach of bundling Tcl scripts with the AndroWish infrastructure is described in AndroWish SDK.

e Testing and debugging Tcl scripts on an Android device can be carried out from a development system using
tkconclient. Files can be transferred using a SSH/SFTP connection as described in tkconclient. More tips can be
found in Test and debug strategies on AndroWish.

e There are certain Limitations of AndroWish.

e Support for generating bar codes using ZINT and decoding bar codes using the ZBar bar code reader, and data

http://www.tcl-lang.org/man/tcl8.6/
http://www.androwish.org/index.html/raw/947184554d0e4d5cf767257f431f8e783a08afe1
http://www.androwish.org/download/AndroWish-8e9d986cd1-debug.apk
http://www.androwish.org/download/AndroWish64-8e9d986cd1-debug.apk
https://wiki.tcl-lang.org/LUCK
http://www.ch-werner.de/LUCK/AndroWish-debug.apk
http://www.ch-werner.de/LUCK/AndroWish64-debug.apk
http://www.tcl-lang.org
http://wiki.tcl-lang.org/4607
https://en.wikipedia.org/wiki/Anti-Grain_Geometry
http://libsdl.org
http://www.freetype.org
http://3dcanvas.tcl-lang.org
http://tclbitprint.sourceforge.net/
http://www.androwish.org/index.html/wiki?name=AndroWish
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://www.androwish.org/index.html/wiki?name=AndroWish
http://zint.github.io
http://zbar.sourceforge.net

matrix codes using the libdmtx library. See description of zbar command and dmtx command.

Beneath and Beyond AndroWish are components in the source tree which can be recompiled for other platforms
like the Raspberry Pi and even Windows.

Slides (PDF) from EuroTcl2014.

Slides (PDF) from Tcl2014.

Slides (PDF) from EuroTcl2015.

Slides (PDF) from EuroTcl2016.

Slides (PDF) from EuroTcl2018.

Slides (PDF) from EuroTcl2019.

http://sourceforge.net/projects/libdmtx/
http://www.raspberrypi.org
http://www.androwish.org/index.html/raw/3de97eab9a70cc0cc00e4085c0e16f07379f72c1
http://www.androwish.org/index.html/raw/8999948f92969d6b3621412a8d617c5e47139ad4
http://www.androwish.org/index.html/raw/06a9a1dfcb301777098b1a27f4e2efaf61b974ff
http://www.androwish.org/index.html/raw/36f96ca4f031ca80e71930dd6b0634326f4515ba
http://www.androwish.org/index.html/raw/4dff70a48281544a297c07589c8e5bcb23e301ad
http://www.androwish.org/index.html/raw/74a49c3689b244ff8960a2da5573b5bd2099c947

-

N

™) Android facilities

borg command

Name

borg - control and interact with the Android OS.

Synopsis

package require Borg
borg cmd ?arg ...?
Description

This command integrates the capabilities of Tcl/Tk with Android by way of several subcommands. These allow Tcl/Tk to
go where it has never gone before by querying and controlling Bluetooth functionality, OS notifications (including
device vibration and even speech), location information, etc.

Bluetooth-Related Commands

borg bluetooth devices

borg

borg

borg

borg

borg

borg

Returns a list suited for array set or dict create commands containing the Bluetooth address and
friendly name of all paired Bluetooth devices.

bluetooth state

Returns the current Bluetooth state: off, on, turning off, or turning on.
bluetooth scanmode

Returns the current Bluetooth scan mode: connectable, off, passive, or visible.
bluetooth myaddress

Returns the Bluetooth address of the local default Bluetooth adapter.

bluetooth remoteaddress address

Returns the friendly name for the given Bluetooth address.

bluetooth on

Quote from Android documentation: do not use without explicit user action to turn on Bluetooth. Tries to
turn the Bluetooth adapter on. Returns 1 if the adapter is already or going to be turned on, 0 otherwise.

bluetooth off

Quote from Android documentation: do not use without explicit user action to turn off Bluetooth. Tries to
turn the Bluetooth adapter off. Returns 1 if the adapter is already or going to be turned off, 0 otherwise.

For communication over Bluetooth see the description of the rffcomm command. For handling of Bluetooth Low Energy
(Bluetooth Smart) devices see the description of the ble command.

USB-Related Commands

borg usbdevices ?extended?

borg

If extended is omitted or false, a list suitable for the array set or dict create commands containing the
USB device name and vendor/product identifier of all currently connected USB devices is returned.
Otherwise, i.e. extended is true, three elements per USB device are returned: USB device name,
product/vendor identifier, and USB interface information as in udev.

usbpermission devname ?ask?

Queries permission for the USB device devname and returns 1 if the device is usable, 0 if not, and a
negative number on error. If the optional boolean argument ask is specified as true, a system dialog is
shown allowing the user to grant or deny permission for the USB device.

For communication over USB serial converters see the description of the usbserial command.

Network-Related Commands

borg networkinfo

http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#enable()
http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#disable()

borg

Returns the current state of the network: none, wifi, mobile gsm, etc. An update of this information is
indicated by the <<NetworkInfo>> virtual event sent to all toplevel widgets.

tetherinfo

Returns the current state of tethering as a list suited for array set or dict create with zero or three
entries active, available, and error which usually contain interface names. An update of this information
is indicated by the <<TetherInfo>> virtual event sent to all toplevel widgets.

Desktop-Related Commands

borg

borg

shortcut add name-of-shortcut script-to-run ?png-icon-as-base-64-string?

Adds an icon to the desktop, with the label name-of-shortcut specified. The script, specified as script-to-
run must use an absolute path as a file:// URI and must be readable by the user id under which the
AndroWish package has been registered by the Android installer. The last (optional) parameter png-icon-
as-base-64-string allows the icon graphic to be specified. If not provided, a default AndroWish icon is
used. According to the guidelines on iconography icons should have an aspect ratio of 48 by 48 pixels (192
X 192 is recommended, at 4 times 48x48 pixels). Example (pseudo code):

package require base64

proc read binary file {name} { # whatever is needed to read bytes ... }
set icondata [read binary file "/mnt/sdcard/appicon 48 48.png"]

set iconbase64 [::base64::encode -maxlen 0 $icondata]

borg shortcut add "My App" file://mnt/sdcard/speaktest.tcl $iconbase64

shortcut delete name-of-shortcut

Deletes an icon from desktop (depends on Android launcher support).

Notification-Related Commands

borg

borg

borg

borg

borg

borg

borg

borg

notification add id title ?text icon action uri type categories component arguments?

Adds a notification with title and text into the Android notification area. The integer id, specified by the
caller, is used to identify the notification for later modification or deletion. The optional parameters starting
from action form an activity (see borg activity ...) to be carried out when the user clicks on the
notification. See the description of borg alarm set below for special treatment of the component
parameter. The optional icon must be a PNG or JPG image encoded as base64 string. The size of the icon
should be 24 by 24 pixels.

notification delete ?id?

Deletes a notification identified that was created with the id specified. If no id is provided, all notifications
are deleted.

notification led id argb onms offms

Adds a notification controlling the device LED. The integer id, specified by the caller, is used to identify the
notification for later modification or deletion. The integer parameter argb is the LED color as combined RGB
value with alpha channel, onms and offms are integers, too, controlling the duty cycle of blinking.

vibrate ms
Turns the vibration motor on for integer ms milliseconds.
beep ?uri?

Plays a notification sound. If uri is specified and not an empty string, it is played as
notification/ringtone/alarm sound. If given as empty string, the current playback is stopped. If omitted or
unable to be resolved, the default notification sound is played. The URI typically has the pattern
content://media/{internal,external}/audio/media/<id>, where id is an integer number identifying a
sound file. The borg content command can be used to obtain information on notification sounds from
Android's media provider.

speak text ?lang pitch rate?

Gets the Android to read out the string text. Optional parameter lang is the language code for the spoken
language, e.g. en, en_US, de, es, etc. Optional parameters pitch and rate control the voice and speed as
float values. On success an integer number >= 1000 is returned which identifies the text to be spoken in
various virtual events. On error a negative number is returned. More information.

stopspeak
Stops speech output.
isspeaking

Returns a small integer indicating the state of speech output. Zero indicates initialization of speech output
has been performed but no speech output is currently active. One is returned when speech output is

http://developer.android.com/design/style/iconography.html
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html

borg

borg

borg

active. A small negative number indicates an error, temporary or permanent unavailability of the text-to-
speech facility. In order to start up the text-to-speech facility this command can be used. The first call
usually returns -1 and calls some few hundred milliseconds later return zero, indicating availability of the
text-to-speech facility.

endspeak
Stops speech output and releases system resources.
toast text ?flag?

Displays a text notification text for a short period of time. The duration of that display is somewhat longer
when flag is specified as true.

spinner on|off

Displays or withdraws a spinner (rotating symbol indicating busy state) depending on argument.

Location-Related Commands

borg

borg

borg

borg

borg

borg

location start ?minrate-in-ms ?min-dist-in-m??

Begins acquiring location data via the Android OS (which may choose to use GPS, network info, etc.).
location stop

Ends location data acquisition.

location get

Returns the location data (as an array set or dict createform) where the key is the location source.
Location updates trigger a virtual event <<LocationUpdate>> that is sent to all toplevel widgets. These
toplevel event-handlers should, in turn, invoke borg location get to refresh their knowledge.

location gps

Returns GPS information in array set or dict create form with the keys state (on or off) and first fix
(time in seconds until first fix expected). Updates in GPS information are indicated by the <<GPSUpdate>>
virtual event sent to all toplevel widgets.

location satellites

Returns GPS satellite information in array set or dict create form where the key is a numerical index and
the values are per satellite information in array set or dict create form containing the fields index,
azimuth, elevation, prn, snr, almanac, ephemeris, and infix. Updates in GPS information are indicated by
the <<GPSUpdate>> virtual event sent to all toplevel widgets.

location nmea

Returns a string made up of the NMEA sentences collected over the last second. Updates in this string are
indicated by the <<NMEAUpdate>> virtual event sent to all toplevel widgets.

System-Related Commands

borg

borg

borg

borg

borg

displaymetrics

Returns information about the display in form suited for array set or dict create, e.g. display resolution,
pixel density. The entry rotation gives the current screen rotation in degrees. The 0 degree point varies
between devices, typical smart phones report 0 for portrait, tablets report 0 for landscape orientation.
More information.

osbuildinfo

Returns information about the operating system and device in form suited for array set or dict create,
e.g. Android API level, version, device name, manufacturer etc. More information.

queryfeatures

Returns information about features of the system (a lengthy list of strings) which is obtained from
getSystemAvailableFeatures.

queryconsts classname

Returns a dictionary of constants of the (loaded) Java class classname. The keys are the names of the
constants, the values their value. For example, the symbols of SYSTEM UI * flags are available when you
evaluate:

borg queryconsts android.view.View

queryfields classname

http://developer.android.com/reference/android/util/DisplayMetrics.html
http://developer.android.com/reference/android/os/Build.html
http://developer.android.com/reference/android/content/pm/PackageManager.html#getSystemAvailableFeatures()

borg

borg

borg

borg

borg

borg

Returns a dictionary of constants and static fields of the (loaded) Java class classname. This is similar to
borg queryconsts but allows to retrieve no-constant strings, too. Most useful in combination with the

android.os.Environment class.

packageinfo ?name?

Returns information about installed packages or an individual package if its name is given. In the first case,
a list with package names is returned, in the latter case a list of key value pairs with package information
which can be used for array set or dict create.

providerinfo
Returns the authority names of all content providers known to the system as a list.
log prio tag message

Writes the message message to Android's system log with priority prio (one of verbose, debug, info, warn,
error, or fatal) and a user chosen prefix tag. These log messages can be displayed using adb logcat on
the development system.

trace message script

Evaluates script and adds message before and after that evaluation to Android's system trace buffer. This
is supported only on newer Android OS versions (4.3 and above) and further described in the

android.os.Trace class.

systemproperties ?name?

Returns a list of system properties (a lengthy list of key value pairs) or the value of a specific system
property if name is given.

checkpermission name

If no arguments are provided a (long) list of permissions known to the package manager is returned. A
detailed list is described in Manifest.permission. If a single name is given, the command returns 0 or 1
depending on manifest permission name. If more than one permission is to be checked, the last parameter
ask must be a boolean. If ask is true, an optional dialog is shown, if the user has to explicitely allow the
respective permissions. If more than a single name is provided the result of the command is a list.

Sensor-Related Commands

borg

borg

borg

sensor list

Returns a list of the available sensors of the device. Each item is suited for array set or dict create and
contains the fields index (integer index of the sensor, used to identify it), type (sensor type, one of
accelerometer, temperature, game rotation vector, geomagnetic rotation vector, gravity, gyroscope,
gyroscope uncalibrated, light, linear acceleration, magnetic field, magnetic field uncalibrated,
orientation, pressure, proximity, relative humidity, rotation vector, step counter, and

step detector), mindelay (minimum update interval in miliseconds), maxrange (maximum range, floating
point), resolution (floating point), power (in mA, floating point), and name (name of the sensor). More

information.

sensor enable|disable|state index

Turns the sensor identified by index on or off, or returns its state (0=off, 1=on). An enabled sensor
generates <<SensorUpdate>> virtual events which are sent to toplevel windows. These events are either
periodic updates or change notifications depending on the kind of sensor and its refresh rate. If a sensor is
not read out using borg sensor get ... for a certain amount of time that sensor is automatically disabled
to conserve battery power. If the application enters background (see virtual event
<<WillEnterBackground>>) all enabled sensors are disabled and re-enabled again when the application
comes back to foreground (see virtual event <<WillEnterForeground>>).

sensor get index

Returns the last value acquired from the sensor identified by index as a list suited for array set or dict
create containing the fields index (integer), enabled (sensor state, 0 or 1), maxrange (see above),
resolution (see above), accuracy (the accuracy of this value), values (the sensor value, zero or more
floating point humbers). When both accelerometer and magnetic field sensors are turned on, the
information for the magnetic_field sensor has two additional entries orientation (3 element list of
azimuth, pitch, roll) and inclination. The pressure sensor has an additional entry altitude (meters
above sea level). More information.

Android Content (shared databases)

borg

content query uri ?columns ?where ?whereargs ?orderby????

Performs a query on an Android content provider given by uri and returns a cursor token (a Tcl command
which deals with that cursor). The optional columns are a list of database columns to appear in the result
set, e.g.

http://developer.android.com/reference/android/os/Environment.html
http://developer.android.com/reference/android/os/Trace.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/hardware/Sensor.html
http://developer.android.com/reference/android/hardware/SensorEvent.html

set cursor [borg content query content://contacts/people {display name id}]

where an empty list of database columns works like the SQL statement "SELECT *".

The optional where and whereargs parameters form the SQL WHERE clause of the query. Question mark
parameter markers in where are positionally substituted by the information from the whereargs list. If the
where parameter does not use a question mark parameter marker, an empty parameter string is obligatory
as in

set cursor [borg content query content://contacts/people {} " id=810" {}]
which is equivalent to
set cursor [borg content query content://contacts/people {} " id=?" 810]

The optional orderby forms the SQL ORDERBY part of the query.

Here's another example demonstrating how data is retrieved:

set cursor [borg content query content://settings/system]
initially, cursor points before first row
while {[$cursor move 1]} {
puts [$cursor getrow]
}

borg content delete uri selection ?value ...?

Deletes rows from an Android content provider given by uri and returns the number of deleted rows.
selection forms the SQL WHERE clause of the deletion where question mark parameter markers are
substituted by value. Example:

borg content delete content://settings/system name=? my item

borg content insert uri key value ...

Inserts a row into an Android content provider given by uri and returns another URI which identifies the
inserted row. key and value are pairs of column name and column value for the SQL INSERT operation.
Example:

borg content insert content://settings/system name my item value "Some value"
-> content://settings/system/4711

borg content update uri values ?selection ?args??

Updates zero or more rows of an Android content provider given by uri and returns the number of
updated rows. values is a list made up of a sequence of column names and column values. selection is
the optional SQL WHERE clause with question mark parameter markers. The parameter markers are
substituted by the values from args. Example:

system settings wants the name in the URI
borg content update content://settings/system/my item {value {New Value}}

Cursors from Android Content queries

When a borg content query returned a cursor token, this token is a Tcl command to deal with the query's result set:
$cursor close

Finishes the query and deletes the Tcl command.
$cursor columnnames

Returns a list of column names of the result set.
$cursor count

Returns the number of rows of the result set.
$cursor getblob index

Returns the indexth column (zero-based) of the current row of the result set as a base64 encoded string.
$cursor getdouble index

Returns the indexth column (zero-based) of the current row of the result set as a floating point number.

$cursor getint index

Returns the indexth column (zero-based) of the current row of the result set as a integer number.

$cursor getpos

Returns the index of the current row (zero-based).

$cursor getrow

Returns the current row as a Tcl list made up of column names and values, like {namel valuel name2
value2} in the order specified by the cursor's constructor. Blobs from the result set are converted into
base64 encoded strings.

$cursor getstring index

Returns the indexth column (zero-based) of the current row of the result set as a string.

$cursor isnull index

Returns true when the indexth column (zero-based) of the current row of the result set is an SQL NULL
value.

$cursor move pos

Relative move of the current row index. Negative pos goes backward.

$cursor moveto pos

Absolute move of the current row index.

Speech Recognition

borg

borg

borg

borg

borg

speechrecognition intent args cmd

Use the speech recognition service. args is a parameter list to control the speech recognition (more

information). cmd is invoked when the speech recognition is complete. That procedure receives the

parameters retcode and data as in the callback for borg activity. data is a list of key value pairs suited
for array set or dict create.

speechrecognition callback cmd

Establishes cmd as global callback procedure receiving speech recognition events as described by the
RecognitionListener interface (more information). That procedure receives the parameters retcode and
data as in the callback for borg activity. data is a list of key value pairs suited for array set or dict
create. There are up to two special keys present in data: type giving the event type (one of result,
partialresult, ready, event. rms, end, begin) and value giving numeric values for certain event types
(error code for error, audio level for rms).

speechrecognition start args
Starts the speech recognition. For args see the description in borg speechrecognition intent
speechrecognition cancel

Immediately cancels the speech recognition. No further events are reported through the global callback
procedure.

speechrecognition stop

Stops the speech recognition. Events can be still reported through the global callback procedure.

Telephone-Related Commands

borg

borg

phoneinfo

Returns information about the current state of the telephone as a list suited for array set or dict create.
This information is only available when the application manifest has the
android.permission.READ PHONE STATE permission (which is left out in current AndroWish releases). For
further information see the Android documentation on the classes TelephonyManager, PhoneStateListener,

and SignalStrength.
sendsms phonenumber msg ?action send action delivered smsc?

Sends an SMS text message msg to phonenumber. The optional arguments action send and

action delivered are the action names of broadcast intents which are generated on state changes
regarding the SMS message and can be captured by a broadcast listener callback (see borg broadcast
register et.al.). The optional argument smsc is the SMS message center. The command returns 1 on
successful start of the send operation, 0 otherwise. It is only available when the application manifest has
the android.permission.SEND SMS permission (which is left out in current AndroWish releases). For further
information see the Android documentation on the class SmsManager.

http://developer.android.com/reference/android/speech/RecognizerIntent.html
http://developer.android.com/reference/android/speech/RecognitionListener.html
http://www.androwish.org/index.html/wiki?name=AndroWish
http://developer.android.com/reference/android/telephony/TelephonyManager.html
http://developer.android.com/reference/android/telephony/PhoneStateListener.html
http://developer.android.com/reference/android/telephony/SignalStrength.html
http://www.androwish.org/index.html/wiki?name=AndroWish
http://developer.android.com/reference/android/telephony/SmsManager.html

Broadcast

borg

borg

borg

borg

broadcast list ?action?

Returns a list of all registered broadcast handlers in the interpreter when action is omitted. Otherwise it
returns the command to be invoked when the broadcast action is received.

broadcast register action cmd

Registers the command cmd to be invoked when the broadcast action is received.
broadcast unregister action

Unregisters the command bound to the reception of the broadcast action.
broadcast send action ?uri type categories arguments?

Sends the broadcast action with the optional properties/arguments uri, type, categories, and
arguments. For the optional items see the description in borg activity.

Locale

borg

borg

borg

borg

locale ?default?

Returns information about the current default locale of the JVM. The result is in a form suitable for array
set or dict get and contains the fields country, display country, display language, display name,
display variant, iso3 country, iso3 language, language, and variant.

locale lang

Returns information about the locale identified by lang, which must be specified as a two letter code with
an optional variant and an optional encoding part, e.g. de, fr BE, or en GB.UTF-8.

locale tts

Returns information about the locale used for text-to-speech. If text-to-speech facilities weren't used
when the command is invoked, the returned information is identical with borg locale default.

locale set lang

Changes the current locale of the JVM to the language code lang. If the locale change succeeded, the
environment variable env (LANG) is changed accordingly.

Camera-Related Commands

Camera support is available on devices with Android 3.0 or newer.

borg

borg

borg
borg

borg

camera close
Close the camera. Returns non-zero on success, zero otherwise, e.g. when the camera was already closed.
camera current

Returns the currently opened camera number or -1 when the camera is not opened. On many tablets
camera 0 is the back-facing camera, and camera 1 the front-facing one.

camera grayimage ?photo?
camera greyimage ?photo?

Copies the most recent camera preview as grey image into the photo image identified by photo. Returns
non-zero on success or zero if no data transfer has taken place. If photo is omitted, a four element list is
returned with the first element being the image width, the second the image height, the third the number
of bytes per pixel, and the last the image's grey values with 1 byte per pixel as a byte array. In this case
an error is indicated by throwing an exception. An experimental feature is direct rendering into a widget. In
this case the photo parameter must be the path name of a Tk window which should be a frame or toplevel
widget. When the camera is started the background color of the widget should be set to an empty string
so that no drawing calls from Tk are carried out. When the camera is stopped, it should be set to black.

camera image ?photo?

Copies the most recent camera preview as color image into the photo image identified by photo. Returns
non-zero on success or zero if no data transfer has taken place. If photo is omitted, a four element list is
returned with the first element being the image width, the second the image height, the third the number
of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red, green, blue order as a
byte array. In this case an error is indicated by throwing an exception. An experimental feature is direct
rendering into a widget. In this case the photo parameter must be the path name of a Tk window which
should be a frame or toplevel widget. When the camera is started the background color of the widget
should be set to an empty string so that no drawing calls from Tk are carried out. When the camera is
stopped, it should be set to black.

borg

borg

borg

borg

borg

borg

borg

borg

borg

borg

borg

camera info

Returns information about the currently opened camera as a two element list made up of integer numbers.
The first is the rotation of the camera relative to the screen, the second an indication for front-facing (1) or
back-facing (0) view of the camera relative to the screen. If no camera is opened the result is an empty list.

camera jpeg

Returns a JPEG image of the camera as a byte array after preview has been started using borg camera
start and JPEG capture has been initiated with borg camera takejpeg. In contrast to borg camera image
... this command consumes the image. If no JPEG picture is available when the command is invoked, an
error is thrown.

camera mirror ?x y?

Controls mirroring of preview images which are mirrored along the X axis when x is one and along the Y
axis when y is one. borg camera mirror 0 1 is useful to mirror the preview image of a front-facing camera.

camera numcameras
Returns the number of available cameras.
camera open ?num?

Opens camera number num and returns non-zero on success. Only one camera can be opened at any one
time. On error or when a camera is already opened, zero is returned. When num is omitted the first camera
is opened (usually the back-facing if two cameras are available).

camera orientation ?degrees?
Returns the current orientation of the preview image relative to the screen or changes it to degrees.
camera parameters ?key value ...?

Returns or changes camera parameters given as key-value pairs, e.g. preview-size 320x240 will change
the size of preview images to width 320 and height 240. The command returns the current camera
parameters (after the potential change, when keys and values where given) as a key-value list which can be
processed with array set or dict get.

camera start

Starts the camera. Acquired preview images are reported by the virtual event <<ImageCapture>>. Returns
non-zero on success, zero when the camera is already started or an error has been detected. When the
acquisition of camera preview images is running borg camera image or borg camera greyimage must be
invoked within 5 seconds, otherwise image acquisition is automatically stopped and needs to be restarted
with another borg camera start command.

camera state
Returns the current camera state as string: unknown, closed, stopped, or capture.
camera stop

Stops the camera, i.e. no more images are acquired. Returns non-zero on success, zero when the camera
is already stopped or an error has been detected.

camera takejpeg

Requests the camera to take a JPEG image. It is required that the camera is capturing, i.e. borg camera
start has been called already. The point in time when acquisition of the JPEG image starts is indicated by
the virtual event <<Shutter>>. When the JPEG image is ready for processing the virtual event
<<PictureTaken>> is sent. The command returns a non-zero value when JPEG capture is in progress, zero
on error.

NFC Related

Many devices have hardware support for NFC (Near Field Communication) tags. In order to deal with such items, a
callback command for the broadcast tk.tcl.wish.nfc must be registered. The callback's arguments contain
information on the NFC tag in these keys:

android.nfc.extra.ID

The the base64 encoded ID of the tag.

android.nfc.extra.TAG

The underlying/supported technologies of the tag as a string. Currently only android.nfc.tech.Ndef and
android.nfc.tech.NdefFormatable are detected and handled.

android.nfc.extra.NDEF_MESSAGES

If present contains the NDEF formatted information contained in the tag encoded in base64.
The last read tag ID is remembered and can be dealt with using these borg subcommands:
borg ndefread tagid ?cached?

Returns the current or cached NDEF formatted information contained in the tag given tagid as base64
encoded string.

borg ndefwrite tagid ndefmsg

Writes the NDEF formatted information (one or more NDEF records) in ndefmsg which must be base64
encoded into the tag given tagid.

borg ndefformat tagid ndefmsg

Formats an empty tag and like borg ndefwrite writes NDEF formatted information into the tag. An
unformatted tag can be detected in the tk.tcl.wish.nfc callback procedure by inspecting the technology
information: The string android.nfc.tech.Ndef is absent but the string
android.nfc.tech.NdefFormatable is present.

OS Environment

Information provided by the android.os.Environment class.
borg osenvironment datadir
Return the user data directory (see getDataDirectory).
borg osenvironment downloadcachedir
Return the download/cache content directory (see getDownloadCacheDirectory).
borg osenvironment externalstoragedir
Return the primary shared/external storage directory (see getExternalStorageDirectory).
borg osenvironment externalstoragepublicdir ?type?

Get a top-level shared/external storage directory for placing files of a particular type (see
getExternalStoragePublicDirectory). The parameter type can be obtained by using information returned
from borg queryfields android.os.Environment.

borg osenvironment externalstoragestate

Returns the current state of the primary shared/external storage media (see getExternalStorageState).

borg osenvironment isexternalstorageemulated

Returns whether the primary shared/external storage media is emulated (see isExternalStorageEmulated).

borg osenvironment isexternalstorageremovable

Returns whether the primary shared/external storage media is physically removable (see
isExternalStorageRemovable).

borg osenvironment rootdir

Return root of the "system" partition holding the core Android OS (see getRootDirectory).
Shared Preferences

An interface to android.content.SharedPreferences is provided using the borg sharedpreferences subcommand. This
allows to load/store typed values of an application in a key-value store which does not require extra file permissions.

borg sharedpreferences file getboolean key default

Return a boolean value (using default if not present) from the shared preference file identified by file
stored under the name key.

borg sharedpreferences file getfloat key default

Return a floating point value (using default if not present) from the shared preference file identified by
file stored under the name key.

borg sharedpreferences file getint key default

Return an integer value (using default if not present) from the shared preference file identified by file
stored under the name key.

borg sharedpreferences file getlong key default

http://developer.android.com/reference/android/os/Environment.html
http://developer.android.com/reference/android/os/Environment.html#getDataDirectory()
http://developer.android.com/reference/android/os/Environment.html#getDownloadCacheDirectory()
http://developer.android.com/reference/android/os/Environment.html#getExternalStorageDirectory()
http://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory(java.lang.String)
http://developer.android.com/reference/android/os/Environment.html#getExternalStorageState()
http://developer.android.com/reference/android/os/Environment.html#isExternalStorageEmulated()
http://developer.android.com/reference/android/os/Environment.html#isExternalStorageRemovable()
http://developer.android.com/reference/android/os/Environment.html#getRootDirectory()
https://developer.android.com/reference/android/content/SharedPreferences.html

Return a 64 bit integer value (using default if not present) from the shared preference file identified by
file stored under the name key.

borg sharedpreferences file getstring key default

Return a string value (using default if not present) from the shared preference file identified by file
stored under the name key.

borg sharedpreferences file setboolean key value

Store the boolean value into the shared preference file identified by file under the name key.
borg sharedpreferences file setfloat key value

Store the floating point value into the shared preference file identified by file under the name key.
borg sharedpreferences file setint key value

Store the integer value into the shared preference file identified by file under the name key.
borg sharedpreferences file setlong key value

Store the 64 bit integer value into the shared preference file identified by file under the name key.
borg sharedpreferences file setstring key value

Store the string value into the shared preference file identified by file under the name key.
borg sharedpreferences file remove key

Remove the value stored under the name key from the shared preference file identified by file.
borg sharedpreferences file clear

Remove all key-value pairs stored in the shared preference file identified by file.
borg sharedpreferences file all

Return a Tcl list suitable for array set of all key-value pairs from the shared preference file identified by
file.

borg sharedpreferences file alltypes

Return a Tcl list suitable for array set of all keys and their respective value types from the shared
preference file identified by file.

borg sharedpreferences file keys

Return a Tcl list of all keys from the shared preference file identified by file.
General

borg withdraw

Hides the application window by putting it to the end of Android's activity stack. Can be useful when bound
to the Back key (<Key-Break> in AndroWish). There's no opposite command, i.e. the application can be
brought to front again only by user interaction.

borg brightness ?percent?
Sets or gets the screen brightness. If the percentage is negative, the default value is restored.
borg onintent ?command?

Sets or gets the callback command which is evaluated when the application received an Android intent. When
evaluating that command, the parameters action name, URI, MIME type, categories, arguments from the
intent are appended. When the callback is set for the first time, it gets immediately evaluated with the
parameters of the current (startup) intent.

borg queryactivites action ?uri type categories component?

Queries Android's activity manager for activities on the given intent parameters. categories and component
are optional lists. The latter when non-empty must contain the two elements package name and class
name.

borg queryservices action ?uri type categories component?

Queries Android's activity manager for services on the given intent parameters, similar to borg
queryactivities.

borg querybroadcastreceivers action ?uri type categories component?

Queries Android's activity manager for broadcast receivers on the given intent parameters, similar to borg
gqueryactivities.

borg screenorientation ?orient?

Queries or switches the screen orientation, orient can be one of unspecified, landscape, portrait, user,
behind, sensor, nosensor, sensorlandscape, sensorportrait, reverselandscape, reverseportrait,
fullsensor, userlandscape, userportrait, fulluser, or locked.

borg keyboardinfo

Returns information about the current keyboard configuration as a list suited for array set or dict create
with these fields: keyboard with possible values none, 12key, and qwerty, hidden and hard hidden with
values 0 (not hidden), 1, (hidden), and -1 (unknown). This can be read out any time. An update in
keyboard configuration state is indicated by the virtual event <<KeyboardInfo>>.

borg alarm clear action ?uri type categories component?
Clears an alarm whose pattern matches the given intent parameters.
borg alarm set when repeat action ?uri type categories component arg ...?

Sets an alarm to fire at when (UN*X epoch, seconds) with repetition each repeat seconds, when repeat is
greater than 0. The alarm sends an intent made up of the given intent parameters (action etc.). The
component parameter is interpreted specially: when empty no component is set on the intent, when given
as self the calling package/class is set as component for the intent (sending the intent to itself, i.e. the
callback of borg onintent will receive it). In all other cases component must be a list with the two elements
package name and class name. arg and following parameters are added to the intent as key value pairs of
extra data.

borg alarm wakeup when repeat action ?uri type categories component arg ...?

Like borg alarm set but this type of alarm is able to wake up the device when suspended (device behavior
depends on lock screen settings).

borg activity action uri type ?categories ?component ?arguments ?callback????

This a very flexible command that allows extensive access to the Android OS and other applications.
categories, component, and arguments are optional lists. callback is the name of the procedure that is
evaluated when the activity action is complete. arguments are key-value pairs where the values are mapped
to Java strings by default. If the key is a 2-element list made up of a data type indicator (int, byte, short,
char, long, float, double, Uri) followed by the key, the value is converted to that data type. See below for
some examples of this command.

borg systemui ?flags?

Returns or sets various flags to control certain aspects of system UI elements displayed on the device's
screen. This is currently supported only on Android 4.4 and newer versions. See the documentation on
android.view.View for a description of the SYSTEM UI * flags.

Events

These events are generated for/by certain borg related commands. They are reported to toplevel widgets only.
<<LocationUpdate>>

Location information has been updated and can be read out using borg location get.
<<GPSUpdate>>

GPS related information has been updated and can be read out using borg location gps and borg
location satellites.

<<NMEAUpdate>>

NMEA data has been updated and can be read out using borg location nmea.
<<NetworkInfo>>

Network state has changed and can be read out using borg networkinfo.
<<TetherInfo>>

Tethering state has changed and can be read out using borg tetherinfo.
<<Bluetooth>>

A change in Bluetooth state and/or scan mode has occured and can be read out using borg bluetooth
state and/or borg bluetooth scanmode.

<<SensorUpdate>>

http://developer.android.com/reference/android/view/View.html

A sensor can be read using borg sensor get The field %x identifies the sensor.
<<KeyboardInfo>>

The keyboard configuration did change and can be obtained by borg keyboardinfo
<<PhoneCallState>>

The call state of the telephone has changed and can be obtained by borg phoneinfo.
<<PhoneDataActivity>>

The state of the telephone's data state has changed and can be obtained by borg phoneinfo.
<<PhoneConnectionState>>

The state of the telephone's connectivity has changed and can be obtained by borg phoneinfo.
<<PhoneServiceState>>

The service state of the telephone has changed and can be obtained by borg phoneinfo.
<<PhoneSignalStrength>>

The signal quality of the telephone has changed and can be obtained by borg phoneinfo.
<<ImageCapture>>

A preview camera image is ready and can be obtained by borg camera image photo or borg camera
greyimage photo. The field %x represents the camera capture state (true when preview images are
captured, false when capture will be stopped).

<<Shutter>>
The camera is about to take a JPEG image.
<<PictureTaken>>

The camera has taken a JPEG picture which can be obtained and consumed by borg camera jpeg. When
the event is reported, image capture of preview images is automatically stopped.

<<USBAttached>>

A USB device was attached. To find out information about the device, use the borg usbdevices command.
This event is generated on Android 4.4 and newer.

<<USBDetached>>
An USB device was detached (opposite of <<USBAttached>>).
<<TTSInit>>

The text-to-speech facility has been started up or shut down. The %X substitution gives an indication for
startup (=0), error (=-1), and unavailability (<-1). Supported in Android 4.1 and higher.

<<TTSStart>>

Speech output of a string has started. The %x substitution is equal to the integer returned by the
corresponding borg speak command. Supported in Android 4.1 and higher.

<<TTSError>>
Error indication for a string to be spoken by borg speak. The %x substitution is equal to the integer
returned by the corresponding borg speak command as for the <<TTSStart>> event. Supported in Android
4.1 and higher.

<<TTSDone>>
End of speech indication for a string to be spoken. The %Xx substitution is equal to the integer returned by

the corresponding borg speak command as for the <<TTSStart>> event. Supported in Android 4.1 and
higher.

borg activity Examples
Sample code to open a browser on the Tcl'ers wiki:

borg activity android.intent.action.VIEW http://wiki.tcl.tk text/html
Sample code to launch the "wifi settings" page:

borg activity android.settings.WIFI SETTINGS {} {} {} {} {}

Sample code to update the Androwish application from its APK:

borg activity android.intent.action.VIEW "file:///sdcard/androwish.apk"
application/vnd.android.package-archive

Sample code to capture an image (only makes thumbnails):

proc callback {retcode action uri mimetype categories data} {
if {$retcode == -1} {
SUCCESS
array set result $data
if {[info exists result(data)]l} {
myphoto configure -data $result(data)

}
)
package require Img

image create photo myphoto
borg activity android.media.action.IMAGE CAPTURE {} {} {} {} {} callback

Sample code to capture an image, which makes full size images but requires a file on external storage:

proc callback {filename retcode action uri mimetype categories data} {
if {$retcode == -1} {
SUCCESS
myphoto configure -file $filename
catch {file delete -force $filename}
}
}
package require Img
image create photo myphoto
set filename [file join $env(EXTERNAL FILES) myphoto.jpeg]
borg activity android.media.action.IMAGE CAPTURE {} {} {} {} \
[list {Uri output} file://$filename] [list callback $filename]

Reading barcodes using the ZXing barcode scanner (which needs to be be installed on your device):

proc barcode read {code action uri type cat data} {
array set result $data
if {[info exists result(SCAN RESULT)]1} {
that is the barcode
result(SCAN RESULT FORMAT) is the barcode format

b
borg activity com.google.zxing.client.android.SCAN {} {} {} {} {} barcode read

http://code.google.com/p/zxing

P

™,
3y
|
I

AndroWish SDK

{
\
e __-/

The AndroWish Software Development Kit

This is a preliminary description of the AndroWish SDK. It consists of a large ZIP file made up of prebuilt components
(Java classes, shared libraries, Tcl library files, and other resource and property files) and a small graphical tool called
bones to customize these components and to finally create an installable Android package (an APK file).

Thus, in theory it is not necessary anymore to mess with the many pieces of source code which make up AndroWish
but to boldly click with the mouse some ten times to get a Tcl based Android App.

Prerequisites

A recent Java Development Kit, version 1.6 or 1.7

Android Standalone SDK tools.

Optionally Apache ant, often available as an optional installable package of a Linux distribution

Tcl/Tk wish version 8.5 or 8.6 (preferred) e.g. from ActiveState's ActiveTcl, but like ant, often available as an
optional installable package of a Linux distribution

AndroWish SDK Setup

The current AndroWish SDK has been tested on some Linux distributions (CentOS 6, Linux Mint 17.1) and on
Windows 7 (32 bit). It is reported to be usable on MacOSX, too.

Download the current AWSDK.zip and unpack it. Ensure, that you've set up your environment and/or path so that
the Android SDK tools can be found by the build tools (gradle or ant). Ensure, that you can run Tcl programs using
wish.

Experimental! For the adventurous there's a single file Win32 (32 bit) binary in bones.exe which contains both a
current wish and AWSDK.zip. It should be copied to a directory of its own where it unpacks the built-in AWSDK.zip
when executed for the first time.

Directory Structure of the SDK

After the AWZIP.zip has been unpacked, the resulting AWSDK directory contains these files and directories (only the
most important ones shown):

Remarks

App descriptor, read/written by the bones tool. Contains App's entry point and
permissions.

File/Directory

AndroidManifest.xml

Build information for gradle or ant. Read/written by the bones tool for
keystore information (code signing).

Tcl/Tk libraries and additional support files (e.g. version information and package

ant.properties

assets/* inventory). Content controlled by the bones tool.
assets/app/* User_c_od_e. The file main.tcl is automatically run by the App. Other user/App
specific files should go here, too.
build.gradle Control file for gradle (like Makefile for make).
build.xml Control file for ant (like Makefile for make).
casket/* Directory where the bones t_ool moves _and I_<eeps track of unselected optional
- components (Tcl/Tk and native shared libraries).
gradle/* Wrapper/support files for gradle.
gradlew Shell script to run gradle on UN*X platforms.
gradlew.bat Batch file to run gradle on Windows platforms.
libs/*.jar Precompiled Java libraries built into the App.

libs/armeabi/*.so
libs/x86/*.s0
local.properties

res/*

settings.gradle

Precompiled native shared libraries for ARM processors. Content controlled by
the bones tool.

Precompiled native shared libraries for x86 processors. Content controlled by
the bones tool.

Information for ant to locate the Android SDK. Updated once on first run of the
bones tool.

App resources, e.g. PNG icon files in various resolutions. Modified by the bones
tool for App icons.

Project settings for gradle.

http://www.androwish.org/index.html/wiki?name=AndroWish
https://developer.android.com/sdk/index.html
http://ant.apache.org
http://www.activestate.com/activetcl
http://www.androwish.org/download/AWSDK-c48f047f5b.zip
http://www.ch-werner.de/AndroWish/bones-c48f047f5b.exe

Java sources, App entry point (an empty Java class deriving from the AndroWish

src/* activity super class). Modified by the bones tool according to the user chosen
package/class names.
tools/bones Tcl source of the bones tool

Except for the "assets/app" directory the layout and content of the AndroWish SDK directory tree should not be
altered manually in order to not confuse the bones tool.

External Tools

The following table lists the external programs which are used throughout operation of the bones tool.

Program Location Remarks
$ANDROID_HOME/platform-tools/adb
(Unix) Android Debug Bridge used to optionally install
adb %ANDROID_HOME%/platform-tools/adb final package and to start it on device or
(Win32) emulator.

adb (fallback, all)

$ANDROID_HOME/tools/android (Unix)

%ANDROID_HOME%/tools/android Android SDK Platform Manager used to setup

(Win32) project initially. Required.

android (fallback, all)

$ANT_HOME/bin/ant (Unix)

ant %ANT_HOME®%/bin/ant (Win32)
ant (fallback, all)

android

Apache ant used to control the APK build
process. Optional, deprecated.

Fossil repository program, optionally used on
startup to verify state of source tree.

Key tool from the Java Development Kit. Only
keytool keytool used when an new keystore for code signing is to
be generated.

fossil fossil

So the bones tool prefers to find the essential external programs using the two environment variables
ANDROID_HOME and ANT_HOME, and the common fallback strategy is to search for the external programs using
the normal search path for executable programs.

Since AndroWish version "Asteroid Day (2018-06-30)" ant is deprecated and gradle is used instead. To switch back
to using ant the two files gradlew and gradlew.bat can be renamed in order to force the bones tool to fall back to
ant.

Start the bones Tool

$ wish <path-where-AWSDK.zip-has-been-unpacked-to>/tools/bones

Fraction 1: Package Selection

The first page of bones allows to remove optional pieces of AndroWish. An overview of included components gives
Batteries Included. Uncheck unneeded packages in the list and remove them by pressing the Remove packages
button. This moves the selected packages out of the staging area that they will not be added later to the APK. The
Revert button moves all removed packages back to the staging area. When satisfied with your choice press the Next
button for the next page.

http://www.androwish.org/index.html/wiki?name=AndroWish

hd bones = (8] %

™~y Y AndroWish Surgery
Select packages to include in the APK.

[»

| Packages
ble
Music

snack
sglite3
tellib
tclsoap
telws =
tdbcl
tdbcsglite

® X K X KX

®x x

Revert Remove packages Next

When all optional components are omitted and CPU support is limited to ARM only (described below), the size of the
resulting APK can be shrinked down to about 4 MByte instead of nearly 30 MByte with everything included.

Fraction 2: Add App Specific Files

This page allows to add files to the folder assets/app within the staging area. The most important script is main.tcl
which when found gets sourced on start up of AndroWish and thus allows to make your own App. Use the right
mouse button to paste or deleted files and directories into the assets/app folder. This works from file managers
which place their selected files into the clipboard. Otherwise use the Browse files ... button to open a simple file
browser. When finished with this step press the Next button to continue.

hd bones = (8] %

/
™ | Androwish Surgery
Add (paste) files in .../assets/app folder.

App specific files/directories =
- ...fassets/app
main.tcl
Back Browse files ... MNext

Fraction 3: The App Manifest

The manifest file (AndroidManifest.xml) is the application descriptor of the APK. It describes the App's unique name
(the combination of Package name and Class name) and its label on the home screen (the App name). A good
choice is a reversed domain name plus an optional package name component plus the final class name (example: the
XZing barcode scanner is com.google.zxing.BarcodeScanner, i.e. com.google.zxing is the package, and
BarcodeScanner the class name). The list box with App permissions allows to grant or revoke specific access
permissions on device components. When you're satisfied with your selection press Make manifest to write your
settings into the AndroidManifest.xml. After the new manifest settings have been written the Next button becomes
sensitive to switch to the next page.

http://www.androwish.org/index.html/wiki?name=AndroWish

bones

T | Androwish Surgery
\ Set properties in App manifest.

Package name: |my.packagel
Class name: |MyClass

App name: |MyFirstApp
x| App permissions [
X android.permission.CAMERA J
X android.permission.INTERNET
android.permission.READ_CALENDAR
android.permission.READ_CALL_LOG kdl

Back Make manifest ‘

NB: Under the hood when writing the AndroidManifest.xml an additional directory tree with a Java file based on the
package/class name fields is written, too, which contains an empty class definition deriving from
tk.tcl.wish.AndroWish. This is the App's worm hole from the Java universe into our little Tcl/Tk galaxy. Its singular
purpose is to satisfy the App naming requirement imposed by the Android empire.

Fraction 3a: Set App Icons

The icon(s) of the App shown in the home screen or in the notification area can be changed by pasting PNG files into
the image labels. New icons should be provided in the four sizes 144x144 (XXHDPI), 96x96 (XHDPI), 72x72 (HDPI),
and 48x48 (MDPI). When finished with the icons press the Next button to switch to the next page.

bones

Back

, I'.
-

AndroWish Surgery
Set App icons.

Browse files ...

MNext

Fraction 4: Build Options, Code Signing

The CPU support selects which shared libraries are packaged into the APK. Currently, prebuilt support for ARM and
x86 exists. However, latest experiments with various x86 devices (Intel Atom) showed, that usually ARM CPU support
is sufficient since the x86 devices have an ARM emulation built in. Omitting x86 support squeezes about 7 MByte out
of the APK when all possible packages have been selected.

The Build mode and various key store related fields control if a debug APK shall be built (which is signed with a special
debug key). Alternatively, your own key shall be used to sign the APK. To create a key store from scratch enter the
values as shown in the image and press the Make keystore button. Otherwise use an already existing keystore (e.g.
~/.keystore , the default of Java's keytool) with approriate values for the key alias and passwords.

When ready for the final APK build step, press the Next button.

e

- ™,
{ A
|]

,
e

Set

key.store
key.store.password
key.alias

key.alias.password

Back ‘

CPU support:

Build mode:

bones -

AndroWish Surgery

build optiens and APK signing.

v armeabi [~ %86

" Debug

B |key5tore

H |secret

: |a|ias

H |secret

MNext

Fraction 5: APK Building

Building the APK (the Cleanup & build button) is equivalent to invoking

$ gradlew clean assembleDebug|assembleRelease

or

$ ant clean debug|release

on the command line within the install directory of the AndroWish SDK. If everything went well, one of the last lines of
output should read BUILD SUCCESSFUL. In this case the APK file can be found in

.../ build/outputs/apk/AndroWishApp-debug.apk for a gradle debug build, .../bin/AndroWishApp-
debug.apk for an ant debug build, .../build/outputs/apk/AndroWishApp-release.apk for a gradle release build,
or .../bin/AndroWishApp-release.apk for an ant release build, and be transferred to a device or emulator. If an
Android device is connected to your development system the middle button changes to Install & run and allows to

install and start the new APK when clicked.

T

\ Cle
.,

bones -

AndroWish Surgery

anup and build APK.

in/build.prop
in/build.prop
in/build.prop
-post-build:
release:

BUILD SUCCESSFUL

Back

[propertyfile] Updating property file: /itmp/AWSDK/b

[propertyfile] Updating property file: /itmp/AWSDK/b

Total time: 27 seconds

Cleanup & build Finish

Fraction 5a: Installing/Running the APK

The Install & run button opens a log window which displays the output of adb logcat (the log facility of the Android

Debug Bridge). An example is shown below which displays an error message originating from the App (the lines with
"libtk" showing a Tcl error message). The check buttons with the single capital letters can be used to filter the log
output according to its log level, e.g. "V" for verbose, "D" for debug, "E" for error. The Lock/Scroll button disables
scrolling of the output window, the Clear button clears the output window, and the Run button allows to restart the
App on the device or emulator.

bones - adb logcat E]@@
: v D[l [WHNE WF
[y gy 0 e N ™ = ™ = ¥ = ¥ L ™ ey =y [
: Read-only file system =
E/cutils (125): Failed to mkdirat(/storage/sdcardl/Android)

: Read-only file system

E/libtk (29999): Error in startup script: can't find package
Img

E/libtk (29999): while executing

E/libtk (29999): "package require Img"

E/libtk (29999): {file "/assets/app/main.tcl” line 5)
E/Sensors | 625): new acc setDelay handle(@),ns{66667080) err

! go to hwmsen

E/ { 625): Could not open '/datasdata/hotplug/cmd’ J
E/ { 625): error : 2, No such file or directory

E/ { 625): Could not open '/data/data/hotplug/cmd’

E/ { 625): error : 2, No such file or directory =

Happy Tcl'ing

%

e
{ 3y
| |

&/ Batteries Included

Batteries Included

Following table lists the extensions built into AndroWish and/or undroidwish including pointers to project pages
and/or documentation. Most extension names in the left most column can be used as package name in package
require. The extension name is linked to the respective folder in the source tree. Column A shows availability in
AndroWish, columns W/O/L in undroidwish (Windows, MacOSX, and/or Linux). A minus sign indicates an extension
which can't be provided for the respective platform for technical reasons. Column B indicates a binary package which
needs to be compiled for the respective platform.

Many extensions also run on POT (plain old Tk, i.e. X11 based on POSIX, Win32 based on Windows, Cocoa based on
MacOSX). However, there are some exceptions: BLT and Tkzinc are not ready for MacOSX. tcluvc is currently POSIX
only and depends on an USB stack providing isochronous transfers. v4I2 requires a Video 4 Linux 2 infrastructure,
which is available only for Linux and *BSDs.

Extension
Name

autoopts

awthemes

(=

le

LT
n

0

bonjour

(o]

g

BSD

BWidget

can2svg
calc
Canvas3d

:

cawt

Expect
Ffid

flexmenu

fsdialog

fswatch

—h

us

D

gridplus
helpviewer

cons

B

0.6.1

10.4
1.0
2.4z

1.1
1.0
1.9.2

1.9.16
0.3

1.2.4
2.9

0.4
8.x
0.1.0

2.2
4.0
1.4
0.4.2

0.7.5

0.2
5.45.4
0.7

1.52
1.15
2.0.1

1.1
2.11
3.0.2

2.0
1.4.11

v

NN 8N
NN R N

v

v

A
A

NN RN
NN R N

v

B Version A W O L Remarks, URL, etc.

Tcl module that automatically gives your program a command line interface,
see https://qgitlab.com/dbohdan/autoopts

Brad Lanam's awlight, awdark, and black themes using tksvg, see
https://sourceforge.net/projects/tcl-awthemes

Bluetooth Low Energy support, part of AndroWish, see ble command

2D graph, bargraph, stripchart widgets, i.e. a subset of full BLT,
http://sourceforge.net/projects/blt

Tcl interface to Apple's implementation of the ZeroConf protocol,
https://github.com/dongolaZ/tcl bonjour,

Android integration, part of AndroWish, see Android facilities

FlightAware's package to various BSD UNIX system calls and library
routines, https://github.com/flightaware/tclbsd

Mega widget package, htt core.tcl-lang.org/bwidget
Tk canvas to SVG conversion from https://thecoccinella.org
Andy Goth's Tcl/Tk calculator application from the Tcl'ers Wiki

High-level OpenGL widget, http://3dcanvas.tcl-lang.org

Paul Obermeier's COM Automation With Tcl package,
http://www.cawt.tcl3d.org

stu's "Communications Endpoints for Tcl" incl. UDP, IPv6,
http://www3.bell.net/stwo/software/index.html

Curses Tcl Toolkit inspired by Tk, http://www.ch-werner.de/ck

Golang inspired concurrency library for Tcl,
https://qgithub.com/securitykiss-com/csp

DBus introspection interface, http://dbus-tcl.sourceforge.net

DBus bindings for Tcl, http://dbus-tcl.sourceforge.net

Win32 Dynamic Data Exchange, part of the Tcl core

Peter Spjuth's DiffUtilTcl package, https://github.com/pspjuth/DiffUtilTcl
Data matrix decoder, http://sourceforge.net/projects/libdmtx, see dmtx

command

Tcl interface to the espeak/espeak-ng library for speech output using Ffidl
and TclOO, part of undroidwish

Automation for interactive programs, http://expect.sourceforge.net
Foreign function interface with dynamic loading using libffi,
https://github.com/prs-de/ffidl

Brad Lanam's flexmenu alternative menu system, see
https://sourceforge.net/projects/tcl-flexmenu

Schelte Bron's ttk file selection dialog,
http://chiselapp.com/user/schelte/repository/fsdialo

File system watcher based on inotify,
http://chiselapp.com/user/schelte/repository/fswatch

Tcl interface to the linux kernel's FUSE subsystem,
https://sourceforge.net/projects/tcl-fuse

Grid based layout system, htt www.Ssatisoft.com/tcltk/gridplus2
Johann Oberdorfer's helpviewer using TkHTML3, http://www.johann-

oberdorfer.eu/blog/2017/04/10/17-10-04 helpviewer
Icon sets, http://www.satisoft.com/tcltk/icons

Support for many image formats, htt sourceforge.net/projects/tkim

http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/dir?name=assets/autoopts0
https://gitlab.com/dbohdan/autoopts
http://www.androwish.org/index.html/dir?name=assets/awthemes10
https://sourceforge.net/projects/tcl-awthemes
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=jni/blt
http://sourceforge.net/projects/blt
http://www.androwish.org/index.html/dir?name=undroid/bonjour
https://github.com/dongola7/tcl_bonjour/
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=undroid/tclbsd
https://github.com/flightaware/tclbsd
http://www.androwish.org/index.html/dir?name=assets/bwidget1.9
http://core.tcl-lang.org/bwidget
http://www.androwish.org/index.html/dir?name=assets/can2svg0.3
https://thecoccinella.org/
http://www.androwish.org/index.html/dir?name=assets/calc0
https://wiki.tcl-lang.org/page/calc
http://www.androwish.org/index.html/dir?name=jni/3dcanvas
http://3dcanvas.tcl-lang.org
http://www.androwish.org/index.html/dir?name=undroid/cawt
http://www.cawt.tcl3d.org
http://www.androwish.org/index.html/dir?name=undroid/ceptcl
http://www3.bell.net/stwo/software/index.html
http://www.androwish.org/index.html/dir?name=undroid/ck8.x
http://www.ch-werner.de/ck
http://www.androwish.org/index.html/dir?name=assets/csp0.1.0
https://github.com/securitykiss-com/csp
http://www.androwish.org/index.html/dir?name=undroid/dbus/dbus-intf
http://dbus-tcl.sourceforge.net
http://www.androwish.org/index.html/dir?name=undroid/dbus/dbus-tcl
http://dbus-tcl.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/tcl
http://www.androwish.org/index.html/dir?name=undroid/DiffUtilTcl
https://github.com/pspjuth/DiffUtilTcl
http://www.androwish.org/index.html/dir?name=jni/libdmtx
http://sourceforge.net/projects/libdmtx/
http://www.androwish.org/index.html/dir?name=undroid/espeak0.2
http://www.androwish.org/index.html/dir?name=jni/expect
http://expect.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/ffidl
https://github.com/prs-de/ffidl
http://www.androwish.org/index.html/dir?name=assets/flexmenu1
https://sourceforge.net/projects/tcl-flexmenu
http://www.androwish.org/index.html/dir?name=assets/fsdialog1.15
http://chiselapp.com/user/schelte/repository/fsdialog
http://www.androwish.org/index.html/dir?name=jni/fswatch
http://chiselapp.com/user/schelte/repository/fswatch
http://www.androwish.org/index.html/dir?name=undroid/tcl-fuse
https://sourceforge.net/projects/tcl-fuse/
http://www.androwish.org/index.html/dir?name=assets/gridplus2.11
http://www.satisoft.com/tcltk/gridplus2
http://www.androwish.org/index.html/dir?name=assets/helpviewer3.0.2
http://www.johann-oberdorfer.eu/blog/2017/04/10/17-10-04_helpviewer
http://www.androwish.org/index.html/dir?name=assets/icons2
http://www.satisoft.com/tcltk/icons
http://www.androwish.org/index.html/dir?name=jni/tkimg
http://sourceforge.net/projects/tkimg

imgjp2 e 0.1 v v v v JP2image format handler based on Open]PEG
Fast inet and bluetooth sockets for Windows by Ashok P. Nadkarni, see

10c ¢ 110 " Y 7 7 https://iocp.magicsplat.com
itcl e 4.2.0 v v v v Tclobject system, http://core.tcl-lang.org/itcl
itk e 4.1.0 v v v v Framework for mega widgets based on itcl, http://core.tcl-lang.org/itk
- Object oriented mega widgets based on itk, http://core.tcl-
Iwidgets 4.1 vy lang.org/iwidgets

FlightAware's Tcl interface to the Apache Kafka distributed messaging
kafka © 243 Y system, https://github.com/flightaware/kafkatcl
materialicons 0.2 v v v v Package wrapping the Material Design Icons, part of AndroWish
Memchan o 2.4 v v v v Memory channels, http://memchan.sourceforge.net
modbus 0.1 v v v v Tcl modbus interface (see http://libmodbus.org) using Ffidl and TclOO.
Mpexpr o 1.2 v v v v Multiprecision math package, https://core.tcl-lang.org/mpexpr

MQTT library including simple broker by Schelte Bron,
matt 3.1 A https://chiselapp.com/user/schelte/repository/mqtt
msapack 2.0 Vv v A pure Tcl implementation of the MessagePack object serialization library,

https://qgithub.com/jdc8/msgpack
muzic e 1.0 v - - - MIDIsound package, part of AndroWish, see Muzic MIDI sound package
Tcl client library for the NATS message broker,

vV v v v
nats 3.0 https://github.com/Kazmirchuk/nats-tcl
notebook 2.2.0 v v v v Wil Duquette's notebook app, https://github.com/wduquette/notebook
nsf e 2.4.0 v v v v New Scripting Framework, http://next-scripting.org

Read and write Office Open XML "XLSX" since Excel 2007,
https://tcl.sowaswie.de/repos/fossil/ooxml

A fast argument parser based on the patterns established by core Tcl
parse args © 051 S commangs, httpsﬁ[{github.com[RubyLZne(parse args /
Tcl parser component,
https://chiselapp.com/user/aspect/repository/tclparser
pdfdtcl 0.9.4 v v v v PDF document generation, http://sourceforge.net/projects/pdf4tcl

BLT/RBC commands for the pdf4tcl library, http://sesam-
mbh.org/images/Downloads/Public/pdf4tcl graph.zi

Schelte Bron's RaspberryPi GPIO/TWI/SPI library,
http://chiselapp.com/user/schelte/repository/piio

pikchr e 1.0 v v v v DRH's pikchr Tcl package, https://pikchr.or
Promise abstraction for asynchronous programming, http://tcl-

promise.magicsplat.com
Tcl package to handle pseudo TTYs,

ooxml 1.7 vV v v v

parser e 1.8 vV v v v

df4tcl graph 1.0 vV v v v

iio e 1.1 - - - v

promise 1.1.0 vV Vv v v

bty © 01 o https://github.com/lawrencewoodman/pty tcl
ral e 0.12.2 v v v v Relational algebra, http://chiselapp.com/user/mangoa01/repository/tciral
ralutil 0.12.2 v v v v Relational algebra, http://chiselapp.com/user/mangoa01l/repository/tciral
reg e 1.3 - v - - Win32 Registry, part of the Tcl core
retcl 0.4.0 v v v v Redis client library for Tcl, https://gahr.github.io/retcl
rfecomm e 1.0 v - - Support for Bluetooth serial port profile, part of AndroWish, see rfcomm
command
rl_json e 0.15.1 v v v v JSON value type extension, https://github.com/RubylLane/rl json
rmqg 1.4.5 v v v v Pure Tcl Library for RabbitMQ, https://github.com/flightaware/tclrmg
Tcl extension embedding "R" Project for Statistical Computing,
Rtdl ¢ 122 A https://github.com/mattadams/Rtcl
Virtual Scrolling without a frame or canvas wrapper,
scrolidata 2.12 o https://sourceforge.net/projects/tcl-virtualscrolling
snap?/ 0.1 v v v Tclinterface to snap7, see http://snap7.sourceforge.net/
snack ¢« 2210 v v v v Sound toolkit (MP3 and OGG support not provided),
— http://www.speech.kth.se/snack
SOAP 1.6.8 v v v v Tcl SOAP interface, http://sourceforge.net/projects/tclsoa
sqlite3 e 3451 v v v v Embedded SQL database, http://www.sqlite.org
starDOM 0.42 Vv v Small XML browser/editor based on tdom and BWidget, http://wiki.tcl-
_— lang.org/3895
. Danilo Chang's Tcl binding to stb_image, https://github.com/ray2501/tcl-
a . v v v v h
stbimage e 0.8 stbimage
tbcload o 1.7 v v v v Byte-code loader, http://wiki.tcl-lang.org/2624
tcl e 8.6.10 v v v v Tclcore, http://www.tcl-lang.org
tcl-augeas e 0.4.0 - - v v Tcbinding to augeas, https://github.com/dbohdan/tcl-augeas
tclcan . 0.1 I Tcl interface to Linux SocketCAN raw AF_CAN sockets, part of undroidwish,
I see tclcan
tclesv e 2.3 v v v v The tclcsv extension by Ashok P. Nadkarni, http://tclcsv.magicsplat.com/

A
A
A

tclcompiler e 1.7.1 Tcl compiler from TDK, https://github.com/andreas-kupries/tdk/

http://www.androwish.org/index.html/dir?name=jni/imgjp2
https://www.openjpeg.org/
http://www.androwish.org/index.html/dir?name=undroid/iocp
https://iocp.magicsplat.com/
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/itcl4.2.0
http://core.tcl-lang.org/itcl
http://www.androwish.org/index.html/dir?name=jni/itk
http://core.tcl-lang.org/itk
http://www.androwish.org/index.html/dir?name=assets/iwidgets4.1
http://core.tcl-lang.org/iwidgets
http://www.androwish.org/index.html/dir?name=undroid/kafkatcl
https://github.com/flightaware/kafkatcl
http://www.androwish.org/index.html/dir?name=assets/materialicons0.2
https://material.io/tools/icons
http://www.androwish.org/index.html/dir?name=jni/Memchan
http://memchan.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/modbus0.1
http://libmodbus.org
http://www.androwish.org/index.html/dir?name=jni/mpexpr
https://core.tcl-lang.org/mpexpr
http://www.androwish.org/index.html/dir?name=assets/mqtt3.1
https://chiselapp.com/user/schelte/repository/mqtt
http://www.androwish.org/index.html/dir?name=assets/msgpack2
https://github.com/jdc8/msgpack
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=assets/nats3
https://github.com/Kazmirchuk/nats-tcl
http://www.androwish.org/index.html/dir?name=assets/notebook2.2
https://github.com/wduquette/notebook
http://www.androwish.org/index.html/dir?name=jni/nsf
http://next-scripting.org
http://www.androwish.org/index.html/dir?name=assets/ooxml1
https://tcl.sowaswie.de/repos/fossil/ooxml
http://www.androwish.org/index.html/dir?name=jni/parse_args
https://github.com/RubyLane/parse_args
http://www.androwish.org/index.html/dir?name=jni/tclparser
https://chiselapp.com/user/aspect/repository/tclparser
http://www.androwish.org/index.html/dir?name=assets/pdf4tcl09
http://sourceforge.net/projects/pdf4tcl
http://www.androwish.org/index.html/dir?name=assets/pdf4tcl_graph1.0
http://sesam-gmbh.org/images/Downloads/Public/pdf4tcl_graph.zip
http://www.androwish.org/index.html/dir?name=undroid/piio
http://chiselapp.com/user/schelte/repository/piio
http://www.androwish.org/index.html/dir?name=jni/pikchr
https://pikchr.org
http://www.androwish.org/index.html/dir?name=assets/promise1.1.0
http://tcl-promise.magicsplat.com
http://www.androwish.org/index.html/dir?name=jni/pty_tcl
https://github.com/lawrencewoodman/pty_tcl
http://www.androwish.org/index.html/dir?name=jni/tclral
http://chiselapp.com/user/mangoa01/repository/tclral
http://www.androwish.org/index.html/dir?name=jni/tclral
http://chiselapp.com/user/mangoa01/repository/tclral
http://www.androwish.org/index.html/dir?name=jni/tcl
http://www.androwish.org/index.html/dir?name=assets/retcl0
https://gahr.github.io/retcl
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=jni/rl_json
https://github.com/RubyLane/rl_json
http://www.androwish.org/index.html/dir?name=assets/tclrmq1.4.5
https://github.com/flightaware/tclrmq
http://www.androwish.org/index.html/dir?name=undroid/Rtcl
https://github.com/mattadams/Rtcl
http://www.androwish.org/index.html/dir?name=assets/scrolldata2
https://sourceforge.net/projects/tcl-virtualscrolling
http://www.androwish.org/index.html/dir?name=assets/snap70.1
http://snap7.sourceforge.net/
http://www.androwish.org/index.html/dir?name=jni/snack
http://www.speech.kth.se/snack
http://www.androwish.org/index.html/dir?name=assets/tclsoap1.6.8
http://sourceforge.net/projects/tclsoap
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/sqlite3.45.1
http://www.sqlite.org
http://www.androwish.org/index.html/dir?name=assets/stardom0.42
http://wiki.tcl-lang.org/3895
http://www.androwish.org/index.html/dir?name=jni/tcl-stbimage
https://github.com/ray2501/tcl-stbimage
http://www.androwish.org/index.html/dir?name=jni/tbcload
http://wiki.tcl-lang.org/2624
http://www.androwish.org/index.html/dir?name=jni/tcl
http://www.tcl-lang.org
http://www.androwish.org/index.html/dir?name=undroid/tcl-augeas
https://github.com/dbohdan/tcl-augeas
http://www.androwish.org/index.html/dir?name=undroid/tclcan
http://www.androwish.org/index.html/dir?name=jni/tclcsv
http://tclcsv.magicsplat.com/
http://www.androwish.org/index.html/dir?name=undroid/tclcompiler
https://github.com/andreas-kupries/tdk

TclCurl e 7.22.0 v v v v Tclinterface to curl library, https://github.com/flightaware/tclcurl-fa

Tcl extension to the epeg thumbnailing library,
https://github.com/dzach/tclepeg

Lexer (lexical analyzer) generator extension to Tcl,
https://salsa.debian.org/tcltk-team/tclex

tclhttpd 3.5.3 v v v Tclbased web server, http://tclhttpd.sourceforge.net

tclIBlend e 2.1.0 v v v v Tcl extension using JNI to co'mmu.nlcat'e with a Java VM,
D https://sourceforge.net/projects/irrational-numbers/files

tcllib 1.21 v v v v Tclstandard library, http://core.tcl-lang.org/tcllib

Tcl interface to the Lightning Memory-Mapped Database,
https://sites.google.com/site/ray2501/tcl-Imdb

Tcl interface to the GraphicsMagick image processing system,
http://www.graphicsmagick.org

Tcl interface to SDL2 mixer (music and sound playback),

tcl-lImdb e 0.4.3 vV v v v

TclMagick e 0.46 v v v

TeMixer ¢ 123 v http://sqlitestudio.pl/tcimixer

. Tcl interface to TaglLib audio meta-data library,
teltaglib ¢ 11 v https://qgithub.com/ray2501/tcltaglib
tcluvc e 0.1 v - v v Tclinterface to UVC type cameras based on libuvc and libusb
telwmf . 0.1 .~ . . Tdinterface to cameras using Windows Media Foundation, see wmf
e command
Tclx e 8.6 v v v v Extended Tcl, https://github.com/flightaware/tclx
tdbc o 1.1.1 v v v v Tcldatabase connectivity, http://core.tcl-lang.org/tdbc
tdbc::jdbc 0.2.0 v v v v TDBC-IDBC bridge, https://github.com/ray2501/TDBCIDBC
tdbc::mysal o 1.1.1 v v v TDBC driver for MySQL, http://core.tcl-lang.org/tdbcmysql
tdbc::odbc e 1.1.1 v v v TDBC driver for ODBC, http://core.tcl-lang.org/tdbcodbc
tdbc::postgres o 1.1.1 v v v TDBC driver for PostgreSQL, http://core.tcl-lang.org/tdbcpostgres
tdbc::sqlite3 1.1.1 v v v v TDBC driver for sqlite3, http://core.tcl-lang.org/tdbcsglite3
TDK o v v v subset of Tcl Dev Kit from https://github.com/tcltk/tdk
tdom e 0.9.3 v v v v XML/DOM/XPath/XSLT implementation for Tcl, http://tdom.org/index.html
tfirmata 2.57 v v v Tdl implementati_on of Arduino Firmata, https://wiki.tcl-
I lang.org/page/Firmata
Thread e 2.85 v v v v Tclthread extension, http://core.tcl-lang.org/thread
ticklecharts 3.2.2 v v v Nicolas Robert s tickleEcharts package, https://github.com/nico-
- robert/ticklecharts
tile-extras various v v ¢ ¢ Misc. bag_of Tk pack_ages_ reIaFed to the Tile widget set,
E— https://github.com/jenglish/tile-extras
Tix e 8.4.3 v v v v Alternate widget set, http://tix.cvs.sourceforge.net/tix/tix
tk e 86.10 v v v v Tktoolkit, http://www.tcl-lang.org
tkcon 2.7 v v v v Tkconsole, http://tkcon.sourceforge.net
tkconclient 1.0 v v v v Remote support for Tk console, borrowed from Tcl wiki, part of AndroWish
TkDND e 29.2 - v v v Tkdrag and drop interface, https://github.com/petasis/tkdnd
Tkhtml e 3.0 v v v v Tk HTML widget, http://tkhtml.tcl-lang.org.tk

. Tool to inspect contents of other running Tk applications,
thinspect >-1.6 vy http://sourceforge.net/projects/tkcon/files
tklib 0.7 v v v v Tkstandard library, http://core.tcl-lang.org/tklib
. Alternate canvas widget with SVG like capabilities,
tkpath 0.3.3 vy https://bitbucket.org/andrew shadura/tkpath
tksqlite 0.5.13 v v v v GUIfrontend to sqlite3, http://reddog.s35.xrea.com/wiki/TkSQLite.html
tksvg e 0.14 v v v v Read SVG to Tk photo images, https://github.com/oehhar/tksvg
Tktable o 2.11 v v v v Tktable widget, http://tktable.sourceforge.net
tkvlc e 0.8 - v v v Video playback using libVLC, https://github.com/ray2501/tkvic
o Manage system tray icons with Tk on X11,

tktray ¢ 139 Y http://code.google.com/p/tktra
Tkzinc . 3.3.6 Vv v TkZinc widget, similar to Tk's canvas,

https://bitbucket.org/plecoanet/tkzinc
tls e 1.6 v v v v Tclinterface to OpenSSL/LibreSSL, http://tls.sourceforge.net
Nicolas Robert's tomato math::geometry 3D library,

LGOI 1.2.3 vy https://github.com/nico-robert/tomato
topcua e 0.5 v v v v Proof of concept Tcl binding to https://open62541.org, part of AndroWish

treectrl e 242 v v v v Tktree widget, http://sourceforge.net/projects/tktreectrl

Transformation procedure framework for Tcl channels,
http://tcltrf.sourceforge.net

trofs e 0.4.9 v v v v Tclread-only filesystem, http://math.nist.gov/~DPorter/tcltk/trofs

. Alexander Schoepe's extension to query serial ports,
p . v v v - .
tserialport R https://tcl.sowaswie.de/tserialport

Trf e 2.1.4 vV v v v

http://www.androwish.org/index.html/dir?name=jni/TclCurl
https://github.com/flightaware/tclcurl-fa
http://www.androwish.org/index.html/dir?name=jni/tclepeg
https://github.com/dzach/tclepeg
http://www.androwish.org/index.html/dir?name=undroid/tcLex
https://salsa.debian.org/tcltk-team/tclex
http://www.androwish.org/index.html/dir?name=undroid/tclhttpd3.5
http://tclhttpd.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/tclJBlend
https://sourceforge.net/projects/irrational-numbers/files
http://www.androwish.org/index.html/dir?name=assets/tcllib1.21
http://core.tcl-lang.org/tcllib
http://www.androwish.org/index.html/dir?name=jni/tcl-lmdb
https://sites.google.com/site/ray2501/tcl-lmdb
http://www.androwish.org/index.html/dir?name=undroid/TclMagick
http://www.graphicsmagick.org
http://www.androwish.org/index.html/dir?name=jni/tclmixer
http://sqlitestudio.pl/tclmixer
http://www.androwish.org/index.html/dir?name=undroid/tcltaglib
https://github.com/ray2501/tcltaglib
http://www.androwish.org/index.html/dir?name=jni/tcluvc
http://www.androwish.org/index.html/dir?name=undroid/tclwmf
http://www.androwish.org/index.html/dir?name=jni/tclx
https://github.com/flightaware/tclx
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbc1.1.1
http://core.tcl-lang.org/tdbc
http://www.androwish.org/index.html/dir?name=assets/tdbcjdbc0.2
https://github.com/ray2501/TDBCJDBC
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcmysql1.1.1
http://core.tcl-lang.org/tdbcmysql
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcodbc1.1.1
http://core.tcl-lang.org/tdbcodbc
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcpostgres1.1.1
http://core.tcl-lang.org/tdbcpostgres
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcsqlite3-1.1.1
http://core.tcl-lang.org/tdbcsqlite3
http://www.androwish.org/index.html/dir?name=undroid/TDK
https://github.com/tcltk/tdk
http://www.androwish.org/index.html/dir?name=jni/tdom
http://tdom.org/index.html
http://www.androwish.org/index.html/dir?name=assets/tfirmata
https://wiki.tcl-lang.org/page/Firmata
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/thread2.8.5
http://core.tcl-lang.org/thread
http://www.androwish.org/index.html/dir?name=undroid/ticklecharts
https://github.com/nico-robert/ticklecharts
http://www.androwish.org/index.html/dir?name=assets/tile-extras
https://github.com/jenglish/tile-extras
http://www.androwish.org/index.html/dir?name=jni/Tix
http://tix.cvs.sourceforge.net/tix/tix
http://www.androwish.org/index.html/dir?name=jni/sdl2tk
http://www.tcl-lang.org
http://www.androwish.org/index.html/dir?name=assets/tkcon2.7
http://tkcon.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/tkconclient1.0
http://www.androwish.org/index.html/dir?name=undroid/tkdnd
https://github.com/petasis/tkdnd
http://www.androwish.org/index.html/dir?name=jni/tkhtml
http://tkhtml.tcl-lang.org
http://www.androwish.org/index.html/dir?name=assets/tkinspect5.1.6
http://sourceforge.net/projects/tkcon/files
http://www.androwish.org/index.html/dir?name=assets/tklib0.7
http://core.tcl-lang.org/tklib
http://www.androwish.org/index.html/dir?name=jni/tkpath
https://bitbucket.org/andrew_shadura/tkpath
http://www.androwish.org/index.html/dir?name=assets/tksqlite0.5.13
http://reddog.s35.xrea.com/wiki/TkSQLite.html
http://www.androwish.org/index.html/dir?name=jni/tksvg
https://github.com/oehhar/tksvg
http://www.androwish.org/index.html/dir?name=jni/tktable
http://tktable.sourceforge.net
http://www.androwish.org/index.html/dir?name=undroid/tkvlc
https://github.com/ray2501/tkvlc
http://www.androwish.org/index.html/dir?name=jni/tktray
http://code.google.com/p/tktray
http://www.androwish.org/index.html/dir?name=jni/tkzinc
https://bitbucket.org/plecoanet/tkzinc
http://www.androwish.org/index.html/dir?name=jni/tls
http://tls.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/tomato1
https://github.com/nico-robert/tomato
http://www.androwish.org/index.html/dir?name=jni/topcua
https://open62541.org
http://www.androwish.org/index.html/dir?name=jni/tktreectrl
http://sourceforge.net/projects/tktreectrl
http://www.androwish.org/index.html/dir?name=jni/trf
http://tcltrf.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/trofs
http://math.nist.gov/~DPorter/tcltk/trofs
http://www.androwish.org/index.html/dir?name=undroid/tserialport
https://tcl.sowaswie.de/tserialport

TWAPI o 4.7.2 - v - - Tcl Windows API extension, http://twapi.magicsplat.com

twv e 0.1 - v v v Simple Tcl Webview (WIP), part of undroidwish
udp e 1.0.11 v v v v UDP sockets, http://core.tcl-lang.org/tclud
ukaz 2.1 v v v v Graph widget written in pure Tcl/Tk, http://github.com/auriocus/ukaz
unglite e 0.3.8 v v v Tclinterface to the UnQLite library, https://github.com/ray2501/tclunglite
upnp 0.2 v v v v Universal Plug and Play, http://chiselapp.com/user/schelte/repository/upn
usbserial e 1.0 v - . . Support for USB serial converters, part of AndroWish, see usbserial
- command
v4l2 e 0.1 - - - v Video For Linux Two interface, see v412 command

Trace facility using Verilog VCD (Value Change Dump) format, see
ved 0.1 Sy https://wiki.tcl-lang.org/page/VCD
VecTcl e 0.3 v v v v Numerical math in Tcl, http://auriocus.github.io/VecTcl

Console for VecTcl derived from tkcon,
VecTdlab vy http://github.com/auriocus/VecTclLab
vfs e 1.4.2 v v v v Virtualfile system in Tcl, https://core.tcl-lang.org/tclvfs/index
vnc e 0.5 v v v v VNC viewer widget, http://ch-werner.de/tkvnc

Package for managing structured datasets in Tcl,
vlerg ¢ 4l v https://web.archive.org/web/20161012011244/http://equi4.com/vlerg.or
vu e 2.3 v v v v Various Tk widgets, http://tktable.sf.net
wibble 0.4 v v v v Small web server, http://chiselapp.com/user/andy/repository/wibble
WITS 3.2.5 - v - - Windows Inspection Tool Set, http://windowstoolset.sourceforge.net
ws 2.7.1 v v v v Tclinterface to web services, http://core.tcl-lang.org/tclws
xml e 3.2 v Tcl interface to XML, http://sf.net/projects/tcixml

winhelp o 1.1 - v - - Tclinterface to Windows HTML Help, http://www.ch-werner.de/winhelp
Tk send command under windows using COM,

- v - -
winsend © 10 https://sourceforge.net/projects/tclsoap/files/winsend
WWW >4 v v v Schelte Brpn‘s www package, _
https://chiselapp.com/user/schelte/repository/www
. Generate an itcl parser for a BNF-like grammar,

4. vV v v v <
yetl 0.4.2 http://www.fpx.de/fp/Software/Yeti
zbar e 0.10 v v v v Barcode scanner, http://zbar.sourceforge.net, see zbar command
zint e 2.13.0 v v v v Barcode generation, http://sourceforge.net/projects/zint

http://www.androwish.org/index.html/dir?name=undroid/twapi
http://twapi.magicsplat.com
http://www.androwish.org/index.html/dir?name=undroid/twv
http://www.androwish.org/index.html/dir?name=jni/tcludp
http://core.tcl-lang.org/tcludp
http://www.androwish.org/index.html/dir?name=assets/ukaz2.1
http://github.com/auriocus/ukaz
http://www.androwish.org/index.html/dir?name=undroid/tclunqlite
https://github.com/ray2501/tclunqlite
http://www.androwish.org/index.html/dir?name=assets/upnp0.2
http://chiselapp.com/user/schelte/repository/upnp
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=undroid/v4l2
http://www.androwish.org/index.html/dir?name=assets/vcd0.1
https://wiki.tcl-lang.org/page/VCD
http://www.androwish.org/index.html/dir?name=jni/VecTcl
http://auriocus.github.io/VecTcl
http://www.androwish.org/index.html/dir?name=jni/VecTcl
http://github.com/auriocus/VecTcLab
http://www.androwish.org/index.html/dir?name=jni/tclvfs
https://core.tcl-lang.org/tclvfs/index
http://www.androwish.org/index.html/dir?name=jni/tkvnc
http://ch-werner.de/tkvnc
http://www.androwish.org/index.html/dir?name=jni/tclkit
https://web.archive.org/web/20161012011244/http://equi4.com/vlerq.org/
http://www.androwish.org/index.html/dir?name=jni/vu
http://tktable.sf.net
http://www.androwish.org/index.html/dir?name=assets/wibble0.4
http://chiselapp.com/user/andy/repository/wibble
http://www.androwish.org/index.html/dir?name=undroid/wits
http://windowstoolset.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/tclws2
http://core.tcl-lang.org/tclws
http://www.androwish.org/index.html/dir?name=jni/tclxml
http://sf.net/projects/tclxml
http://www.androwish.org/index.html/dir?name=undroid/winhelp
http://www.ch-werner.de/winhelp
http://www.androwish.org/index.html/dir?name=undroid/winsend
https://sourceforge.net/projects/tclsoap/files/winsend
http://www.androwish.org/index.html/dir?name=assets/www2
https://chiselapp.com/user/schelte/repository/www
http://www.androwish.org/index.html/dir?name=assets/yeti0.4.2
http://www.fpx.de/fp/Software/Yeti
http://www.androwish.org/index.html/dir?name=jni/ZBar
http://zbar.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/zint
http://sourceforge.net/projects/zint

) Beyond AndroWish

Some subdirectories of AndroWish have a ready-to-build-then-use Debian infrastructure built in. That allows to build
Debian packages easily e.g. on a Raspbian distribution running on your Raspberry Pi:

cd .../jni/SDL2 ; dpkg-buildpackage -tc -uc ; dpkg -i ../libsdl2*.deb
cd .../jni/tcl ; dpkg-buildpackage -tc -uc ; dpkg -i ../sdltcl*.deb

cd .../jni/sdl2tk ; dpkg-buildpackage -tc -uc ; dpkg -i ../sdl2tk*.deb
/opt/sdltk86/bin/sdl2wish8.6

Building some components of AndroWish for the Windows OS family is possible, too, by using cross compilation on a
Linux system. More information can be found in undroidwish.

The resulting sd12wish8.6, sd12wish86.exe, or undroidwish binaries support additional command line options to
control certain SDL features. Important: these options must be specified on the command line after the optional script
to be executed:

-sdlfullscreen

Make the SDL window (the root window for Tk) into a fullscreen window.
-sdlresizable

Allow resizing of the SDL window.
-sdlnoborder

Make the SDL window borderless, i.e. without window manager decorations.
-sdlheight pixels

Set the height of the SDL window to pixels.
-sdlwidth pixels

Set the width of the SDL window to pixels.
-sdlrootheight pixels

Set the height of the root window (as seen by Tk) to pixels. If not set, the root window's size is equal to
the SDL window size.

-sdlrootwidth pixels

Set the width of the root window (as seen by Tk) to pixels. If not set, the root window's size is equal to
the SDL window size.

-sdlxdpi dpi
Set the dots per inch ratio for the X dimension to dpi. If both, -sdlxdpi and -sdlydpi are not set, the
default is approx. 75 dpi. If only one dimension is set (-sdlxdpi or -sdlydpi), that value is taken as overall
dots per inch ratio.

-sdlydpi dpi
Set the dots per inch ratio for the Y dimension to dpi. If both, -sdlxdpi and -sdlydpi are not set, the
default is approx. 75 dpi. If only one dimension is set (-sdlxdpi or -sdlydpi), that value is taken as overall
dots per inch ratio.

-sdlnogl
Force using the software renderer. This turns OpenGL usage off.

-sdllog level
Set the minimum log level to be shown in SDL log message. level must be a positive integer.

-sdlicon filename
Set the SDL root window icon to the BMP image from filename.

-sdlnosysfonts
Don't search for and register system fonts. This can reduce startup time significantly.

-sdlopacity value

Set the initial opacity of the SDL root window. value must be given as positive integer percentage.

http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.debian.org
http://www.raspbian.org
http://www.androwish.org/index.html/wiki?name=AndroWish

-sdlswcursor

Force use of a software cursor texture. Useful, when no proper hardware cursor support is available, e.g.
in Haiku using the OpenGL render driver.

Some SDL runtime switches must be specified early by setting environment variables. All these switches are
documented in the SDL_hints.h header file. The most important are:

SDL_VIDEODRIVER

A string selecting the video driver, use it to enable the jsmpeg video driver.

SDL_RENDER DRIVER

A string selecting the SDL renderer. Normally chosen automatically but sometimes it can be necessary to
explicitly turn on the software renderer. Other possible values depend on how SDL was built, e.g opengl,

opengles2 etc.

ST
T n

)
5/ ble command

ble command

Name
ble - interact with Bluetooth Low Energy (BLE) devices. Requires Android 4.3 or higher.
Synopsis

package require Ble
ble subcommand ?options?

Description

This command is used to deal with Bluetooth Low Energy (BLE) devices. The legal subcommands (which may be
abbreviated) are:

ble abort handle

Abort the current write transaction on the BLE connection identified by handle which was obtained earlier
by a ble connect command. Returns an integer indicating success (1), failure (0), or system error (less
than 0).

ble begin handle

Starts a write transaction on the BLE connection identified by handle which was obtained earlier by a ble
connect command. Returns an integer indicating success (1), failure (0), or system error (less than 0).

ble callback handle ?callback?

If the callback argument is provided that argument replaces the callback function on the BLE connection
identified by handle and returns the old callback function. Otherwise the current callback function is
returned. In contrast to e.g. the Tk event bind mechanism, the callback argument has not all the freedom
of a Tcl bind script, i.e. it must be a single command and be parseable as a list since internally the Tcl core
function Tcl_EvalObjv() is used for executing the callback instead of the Tcl_Eval*() function family
supporting full scripts.

ble characteristics handle suuid sinstance

Returns a list of characteristics of the service described by its UUID suuid and instance number sinstance
on the BLE connection handle. The list is layed out as a table with the five columns characteristic UUID,
characteristic instance number, permissions, properties, and write type suitable for iterating using foreach
{cuuid cinstance perm prop wrtype} [ble characteristics ...] {...}.

ble close handle

Closes the BLE connection identified by handle which was obtained earlier by a ble connect or ble scanner
command.

ble connect address callback ?flag?

Connects to the Bluetooth LE device with address address (expressed as six hexadecimal 8 bit numbers
separated by colons, like a Ethernet MAC address), and arranges for the callback command to be invoked
on events on the connection to this device. The optional flag is a boolean with default false controlling
automatic connection setup (see the Android documentation for more details). The callback command is
called with two additional arguments, the first is a string (connection, scan, service, characteristic,
descriptor, or transaction) indicating the kind of event, the second is a dictionary with event related
information, see the section Event Data below. For restrictions of the callback argument see the
description in ble callback above. The result of the ble connect command is a handle (a string identifying
the BLE connection) to be used in other ble subcommands. During connection establishment an automatic
discovery takes place which detects all advertised services, characteristics, and descriptors of the remote
Bluetooth LE device.

ble descriptors handle suuid sinstance cuuid cinstance

Returns a list of descriptors of the service and characteristic described by its UUIDs suuid and cuuid and
instance numbers sinstance and cinstance on the BLE connection handle. The list is layed out as a table
with the two columns descriptor UUID and permissions suitable for iterating using foreach {duuid perm}
[ble descriptors ...]1 {...}.

ble disable handle suuid sinstance cuuid cinstance

Turns off notifications of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0).

https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html

ble

ble

ble

ble

ble

ble

ble

ble

ble

ble

ble

ble

ble

disconnect handle

Initiates a disconnect of the BLE connection handle if the current connection state is disconnected. When
the operation completes the callback function of the connection is invoked.

dread handle suuid sinstance cuuid cinstance duuid

Initiates the read of a descriptor of the BLE connection handle identified by suuid (128 bit service UUID),
sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), cinstance
(characteristic identifier, integer, usually 0), and duuid (128 bit descriptor UUID). The result is a positive
integer when the descriptor read operation is in progress, 0 or negative on error. The completion of the
descriptor read operation is indicated through the callback function of the connection.

dwrite handle suuid sinstance cuuid cinstance duuid value

Initiates the write of a descriptor of the BLE connection handle identified by suuid (128 bit service UUID),
sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), cinstance
(characteristic identifier, integer, usually 0), and duuid (128 bit descriptor UUID). value is the value to be
written and should be a string or byte array. The result is a positive integer when the descriptor write
operation is in progress, 0 or negative on error. The completion of the descriptor write operation is
indicated through the callback function of the connection.

enable handle suuid sinstance cuuid cinstance

Turns on notifications of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0).

equal handle uuidl uuid2

Tests if the given UUIDs are equal. Both can be specified in abbreviated form and are expanded before
comparison. Returns true, if the UUIDs are the same. Unknown abbreviated or long UUIDs with respect to
the connection handle compare always to false.

execute handle

Dispatches execute (commit) of the current write transaction which was started earlier using ble begin on
the BLE connection identified by handle which was obtained earlier by a ble connect command. Returns an
integer indicating success (1), failure (0), or system error (less than 0). The result of the transaction is
reported in the callback with event kind transaction.

expand handle uuid

Expands the given (abbreviated, short) UUID to its 128 bit (long, canonical) form and returns a 128 bit
UUID string. An error is reported if an abbreviated or long UUID is unknown with respect to the connection
handle.

getrssi handle

Requests remote SSI information from the BLE connection identified by handle which was obtained earlier
by a ble connect command. Returns an integer indicating success (1), failure (0), or system error (less
than 0). The updated remote SSI is reported in later callbacks.

info ?handle?

Returns information of the BLE connection identified by handle as a dictionary made up the fields handle
(the connection identifier), address (Bluetooth address), and state (connection state, one of disconnected,
discovery, scanning, connected, or idle. If handle is omitted, a list of all known connection identifiers is
returned.

mtu handle ?value?

Returns or sets the maximum transmission unit (MTU) of the BLE connection identified by handle. Support
of this function varies between Android versions.

pair address

Initiates pairing with the Bluetooth device with address address (expressed as six hexadecimal 8 bit
numbers separated by colons, like a Ethernet MAC address).

read handle suuid sinstance cuuid cinstance

Initiates the read of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0). The result is a positive integer when the read
operation is in progress, 0 or negative on error. The completion of the read operation is indicated through
the callback function of the connection.

reconnect handle

Initiates a reconnect of the BLE connection handle if the current connection state is disconnected. When

ble

ble

ble

ble

ble

ble

ble

ble

the operation completes the callback function of the connection is invoked with information on the new
connection state.

scanner callback

Creates a BLE connection to be used for detection (scan) of BLE devices and returns a handle (a string
identifying the BLE scanner) to be used to deal with this scanner and arranges for the callback command
to be invoked on events on the connection. See the description of ble connect and the section Event
Data for more details on the callback argument.

services handle

Returns a list of services of the BLE connection handle. The list is layed out as a table with the three
columns service UUID, service instance number, and service type suitable for iterating using foreach
{suuid sinstance type} [ble services ...] {...}.

shorten handle uuid

Shorten the given (long, canonical) UUID to its shortest (16 or 32 bit) form. An error is reported if the
long UUID is unknown with respect to the connection handle. If no unique abbreviation is found, the full
128 bit UUID is returned.

start handle

Starts scanning for BLE devices. Scan status and scan results are indicated by invocations of the callback
function given to the corresponding ble scanner command.

stop handle

Stops scanning for BLE devices. Scan status is indicated by invocations of the callback function given to
the corresponding ble scanner command.

unpair address

Initiates release of the pairing with the Bluetooth device with address address (expressed as six
hexadecimal 8 bit numbers separated by colons, like a Ethernet MAC address).

userdata handle ?data?

Associate or retrieve user data with the BLE connection handle. When data is given it replaces the former
associated user data. When omitted, the current user data or an empty list is returned.

write handle suuid sinstance cuuid cinstance value

Initiates the write of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0). value is the value to be written and should be a
string or byte array. The result is a positive integer when the write operation is in progress, 0 or negative
on error. The completion of the write operation is indicated through the callback function of the connection.
Note: not all Android implementations allow more than one active command (example, issuing a "ble read"
immediately after a "ble write"). For best compatibility, you should wait for the callback that your write
operation has completed before issuing the next ble write/read command.

Abbreviated UUIDs

The 128 bit UUID arguments to ble commands can be specified in abbreviated 16 or 32 bit form as long as the value
is unique with respect to the UUIDs learned during the discovery phase. Examples:

TI SensorTag Base UUID: FOOO0000-0451-4000-BOOO-000000000000

IR Temperature Sensor Service: FOOOAA0O-0451-4000-B000-000000000000

abbreviated (32 bit): FOOOAAQ0
abbreviated (16 bit): AAOO

IR Temperature Sensor Value: FOOOAADL-0451-4000-BO0O0O-000000000000

abbreviated (32 bit): FOOOAAOL
abbreviated (16 bit): AAO1

Generic descriptor for notify: 00002902-0000-1000-8000-00805F9B34FB

abbreviated (32 bit): 00002902
abbreviated (16 bit): 2902

Event Data

The first argument to callback functions is the type of event, as described below.

connection

scan

Indicates change in connection state.

Indicates change in scan state or reports newly detected Bluetooth LE devices.
service

Information about a service.
characteristic

Information about a characteristic, used for data exchange.
descriptor

Information about a descriptor (meta information of a characteristic).
transaction

Indicates status of a write transaction.

The second argument to callback functions is a dictionary with keys depending on the kind of the event. The following
paragraphs list the various event formats.

handle h state s
Connection state event for ble scan. state can be one of scanning or idle.
handle h address a state s rssi r

Connection state event for ble connect. state can be one of disconnected, discovery, or connected. In
the discovery phase the services, characteristics, and descriptors of the remote device are gathered. The
rssi field contains the last read remote SSI (signal strength indicator) in dBm as integer number.

handle h state s address a name n type t rssi r

Scan result event. address is the Bluetooth address of the remote device, name it's advertised friendly
name, type the device type as integer, rssi the receive SSI in dBm as integer.

handle h address a state s rssi r suuid su sinstance si type t

Service discovery event. suuid is the UUID of the service, sinstance the instance of that service as integer
number. Refer to BluetoothGattService for details.

handle h address a state s rssi r suuid su sinstance si cuuid ci cinstance ci permissions p properties g
writetype w access a value v

Characteristic event. cuuid is the UUID of the characteristic, cinstance the instance of that characteristic
as integer number. The items permission, properties, and writetype are integer numbers, too. The
access item contains a one letter code indicating the type of access ('c' for change notification, 'd' for
discovery, 'r' for read, 'w' for write). The value item holds the data of the characteristic as a byte array.
It's interpretation is device/characteristic depending. This event is reported during discovery and normal
operation when ble read or ble write are performed locally or notifications for the characteristic are
enabled using ble enable. Refer to BluetoothGattCharacteristic for details.

handle h address a state s rssi r suuid su sinstance si cuuid ci cinstance ci duuid di permissions p
access a value v

Descriptor event. duuid is the UUID of the descriptor. The item permission is an integer number, too. The
access item contains a one letter code indicating the type of access ('d' for discovery, 'r' for read, 'w' for
write). The value item holds the data of the descriptor as a byte array. It's interpretation is
device/characteristic/descriptor depending. This event is reported during discovery and normal operation
when ble dread or ble dwrite are performed locally. Refer to BluetoothGattDescriptor for details.

handle h success s

Transaction result event. success is the transaction result and is 1 for success or 0 for failure.

Example

The following example scans for Bluetooth LE devices, connects to a TI SensorTag and enables notifications of the
buttons of the device.

proc ble handler {what data} {
switch -- $what {
scan {
if {[dict get $data name] eq "SensorTag"} {
found the TI SensorTag, connect it, stop the scanner
ble connect [dict get $data address] ble handler 1
ble close [dict get $data handle]
}
}
connection {
if {[dict get $data state] == "disconnected"} {

https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattDescriptor.html
http://www.ti.com/tool/cc2541dk-sensor

fall back to scanning
ble close [dict get $data handle]
ble start [ble scanner ble handler]

} elseif {[dict get $data state] == "connected"} {
if the TI SensorTag buttons were found,
it will be enabled for notifications now
set handle [dict get $data handle]
set cmd [ble userdata $handle]
if {$cmd ne {}} {

if {[{*}$cmd]} {
success, clear userdata
ble userdata $handle {}

}

descriptor {
if {[string match "*2902-*" [dict get $data duuid]] &&
[string match "*FFEl-*" [dict get $data cuuid]]l} {
descriptor for TI SensorTag buttons found
set flag 0
notification enable state, 16 bit little-endian
0x0000 = disabled, 0x0001 = enabled
binary scan [dict get $data value] s flag
if {!$flag} {
later turn on notifications of button changes
set handle [dict get $data handle]
ble userdata $handle [list ble enable $handle \
[dict get $data suuid] [dict get $data sinstance] \
[dict get $data cuuid] [dict get $data cinstance]]

}

}

dump data to stdout

if {[dict exists $data value]} {
make hex string from byte array
binary scan [dict get $data value] H* value
dict set data value $value

}
puts "$what: $data"
}

ble start [ble scanner ble handler]

ST

B

7/ Build custom Androwish

Starting point

Starting point is the description by Christian at http://www.androwish.org/index.html/wiki?name=Building+AndroWish
and the following quote from wiki page Androwish:

Please fetch the sources (the big .tar.bz2), unpack it, have Android SDK and NDK installed, don't use Eclipse, adapt
local.properties to where you've installed Android SDK, have your PATH properly set so that ndk-build can do its job,
then invoke "ant debug", be patient, and you'll finally will have bin/AndroWish-debug.apk ready to be installed onto
your device. I have never verified the build process in combination with Eclipse. Once upon a time, I did my very first
steps using the tips from the SDL documentation regarding Android.

When you want to wrap your own app written as Tcl code, you should add it below assets/app, have the launching
script as main.tcl, fiddle the toplevel AndroidManifest.xml to have your app/class name in, remove that
AndroWishScript/Launcher stuff from the manifest (since not needed for a standalone app), derive your app main
class (yes, some Java required) from src/tk/tcl/wish/AndroWish.java, e.g.

import tk.tcl.wish.AndroWish;
public class TclTkRules extends AndroWish {}

fiddle the res directory with a new really kooool icon and title for your app.

Build Androwish

Get Source

A release source is on the web site. If an intermediate version should be used, one may clone the fossil repository and
check out the latest checkin on trunk:

fossil clone http://anonymous:F4DC0163@www.androwish.org androwish.fossil
mkdir androwish

cd androwish

fossil open ../androwish.fossil

rm .fslckout

Try on Windows

Windows build stopped with ndk-build with a "command line to long" error. I tried cmd.exe and cygwin shell, same
result.

This should be fixed since check-in [52a07071b99fa88a] and was verified on Windows 8.1 32 bit using Android NDK
ri2b and Android SDK 24.4.1.

Try on OSX

NDK: I downloaded android-ndk-r10e-darwin-x86_64.bin - then chmod +x, execute it, and move extracted files to
/usr/local/android-ndk

Added this to ~/.bash_profile:

export NDK PROJECT PATH=/usr/local/android-ndk
export ANDROID HOME=~/Library/Android/sdk
export PATH=${PATH}:~/android-sdk-mac/tools:/usr/local/android-ndk

edited "project.properties" to update the android target number.

Project target.
target=android-21

To build:

cd ~/Documents/androwish
export NDK PROJECT PATH="pwd"
ant debug

"ant debug" runs for about 30 minutes, and ends with

BUILD SUCCESSFUL

Try on CentOS 6

http://wiki.tcl.tk/41282
http://www.androwish.org/index.html/honeypot

Failed for me due to a to old clib.

Christian: remarked that he is using CentOS 6 or Ubuntu 12.04 LTS with Andriod NDK 9d. So this failure might be due
to the fact, that I tried Android NDK 10d.

OpenSuSE 13.2 64 bit

I installed VirtualBox on my Windows 8.1 and OpenSuSE 13.2 64 bit with 100GB HarDisk and 4GB Ram.

e Added series: java development
e Added packages: java-1_7_0-openjdk-devel, xerces-j2-xml-apis

Activate Java 7 (e.g. 1.7):

update-alternatives --config java

-> 1.7

update-alternatives --config javac

-> 1.7

update-alternatives --config xml-commons-apis
-> xerces-j2-xml-apis.jar

Set up Android build system:

cd ~

mkdir android
cd android
mkdir download

Downloaded in ~/android/download:

e android-sdk_r24.1.2-linux.tgz
e android-ndk-r9d-linux-x86_64.tar.gz
e androwish-e2aee3ea2ea718e7.tar.gz (Pi Day Release, also tested with following Don Quixote Release)

Christian: suggested to use the 9d release of the ndk instead of the current 10d due to the following reasons:

e still supports Android 2.3.3, like AndroWish
e tiff library does not compile with 10d

The download link is:

e Linux 64 bit: https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86 64.tar.bz2
e Linux 32 bit: https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86.tar.bz2

Unpack and install, androwish in folder "androwish" for easier access

cd ~/android

tar xvzf download/android-sdk r24.1.2-linux.tgz

bzip2 -d download/android-ndk-r9d-linux-x86 64.tar.bz2
tar xvf download/android-ndk-r9d-linux-x86 64.tar

tar xvf download/androwish-e2aee3ea2ea718e7.tar.gz

mv androwish-e2aee3ea2ea718e7 androwish

(start side note)

ndk 10d install instructions (if 9d is not used as above)

cd ~/android
chmod +x download/android-ndk-rl10d-1linux-x86 64.bin
download/android-ndk-r10d-linux-x86 64.bin

(end side note)

Open Android SDK manager:

~/android/android-sdk-linux/tools/android sdk
-> Select Google APIs ARM EABI v7a System Image
-> Unselect all other system images

Prepare build and let "android" create "local.properties":

export PATH=$PATH:~/android/android-sdk-linux/tools:~/android/android-ndk-r9d
cd androwish

android update project -p . --target 1

(the export command may be copied to ~/.bashrc to be active for each shell start)

https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86_64.tar.bz2
https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86.tar.bz2

(start of side note)

Error with ndk 10d and not with 9d (e.g. only when 10d is used)

On "ant debug", I had the following build error I could not solve:

[exec] [armeabi] Compile thumb : tiff tkimg <= tif predict.c

[exec] /tmp/ccTUdnr3.s: Assembler messages:

[exec] /tmp/ccTUdnr3.s: Error: unaligned opcodes detected in executable segment
[exec] make: [obj/local/armeabi/objs/tiff tkimg/libtiff/tif predict.o] Error 1

This is in jni/tiff. So I deleted the tkimg and jni/tiff folders:
rm -rf jni/tkimg jni/tiff

The build error most likely is caused by a compiler problem. This issue is fixed in an AndroWish check-in on 2015-06-
30 by compiling libtiff to ARM instead of Thumb code. The x86 version of the compiler does not cause build errors.

(end side note)
Now, an "ant debug" succeeds for me. The result is in "androwish/bin/AndroWish-debug.apk

Great, thank you, Cristian !

Customizing Androwish

This is a customisation for the application called "HIBIScan" for the company url "elmicron.de". You should replace
those names by your own ones.

Delete not required packages

It is perhaps me, but I always try to get small packages with as less as possible included. So I deleted packages I
know and I don't need in this project:

cd jni

rm -rf 3dcanvas blt curl expect itk jpeg libxml2 nsf TclCurl tclral tcludp tclx tclxml\
tdom tiff Tix tkimg tktable tktreectrl vu xotcl zint

cd jni/tcl-pkgs

rm -rf tdbcmysqll.0.3 tdbcsqlite3-1.0.3 itcl4.0.3 sqlite3.8.8.3 tdbcodbcl.0.3\
thread2.7.2 tdbcl.0.3 tdbcpostgresl.0.3

cd androwish
rm -rf tkchat

cd assets

rm -rf bin blt2.4 bwidgetl1.9.7 Canvas3dl.2.1 expect5.45.2 gridplus2.10 iconsl.2 itcl4.0.3\
itk4.0.1 iwidgets4.1 nsf2.0.0 pdf4tclO8 ral0.11.2 ralutil0.11.2 sqlite3 TclCurl7.22.0\
tcllibl.16 tclsoapl.6.8 tclws2.3.8 tclx8.4.1 Tclxml3.2 tdbcl.0.3 tdbcsqlite3-1.0.3 tdom0.8\
thread2.7.2 tkimgl.4.3, tklib0.6, tksqlite0.5.11, tktable2.11 treectrl2.4.1 vu2.3

This results in an androwish size of 17MB, so 6 MB less than the full package.
Remove target x86

For most Android phones, the target armeabi is sufficient. So the target x86 might be deleted: Remove "x86" in file
jni/Application.mk to get:

APP_ABI := armeabi

This results in a final apk size of 10MB. My phone says that it takes 19.7 MB, while AndroWish takes 39.3MB.
Include own script
Now, the script tree of the application is copied to assets/app and a main.tcl is there to be started:

cd assets

mkdir app

cd app

cp <somewhere>/main.tcl .
cp -r <somewhere>/* .

An "ant debug" results in a starkit-like apk file.
Remove permissions not required for the app

In "./AndroidManifest.xml", you may delete any permission, but:

http://www.androwish.org/index.html/wiki?name=AndroWish

<uses-permission android:name="android.permission.INTERNET" />
Application will directly terminate if not present.
Change package name

In "./AndroidManifest.xml", you should change the package name to be different to androwish. Otherwise, the
applications may not be installed together.

In "./AndroidManifest.xml"
package="de.elmicron.hibiscan"

where "de.elmicron.hibiscan" is my internet domain and the application name as last component. This should be
adopted on request.

Add into "src/tk/tcl/wish/AndroWish.java" at the end of the include list:
import de.elmicron.hibiscan.R;
to avoid error:

none
[javac] /home/oehhar/android/androwish-hibiscan/src/tk/tcl/wish/AndroWish.java:1519: error: package
R does not exist
[javac] R.drawable.wish);

This error only happens after an
ant clean

Otherwise, the old class definition of "tk.tcl.wish.R" is still present in the gen source tree.

Add a derived class in "src/de/elmicron/hibiscan/HIBIScan.java". The file path is composed of "src" and the package
name, dots replaced by "/". The file name is the class name, where I used the application name.

File contents:

package de.elmicron.hibiscan;
import tk.tcl.wish.*;
public class HIBIScan extends AndroWish { }

(Christian: by private email) Then, each usage in "<activity...>" of "tk.tcl.wish.AndroWish" in "AndroidManifest.xml"
should be replaced by "de.elmicron.hibiscan.HibiScan". Here, this is done in the next step.

Remark: the usage of a derived class did not make any difference to me. I could stay with the class
"tk.tcl.wish.AndroWish". Nevertheless, Christian: recommends it. Comments welcome...

Start script directly

Loose translation of E-Mail from Christian::

The file "AndroidManifest.xml" for own applications should bette be structured similar to
".../hellotcltk/AndroidManifest.xml". The own application should not be started by the activity "AndroWishLauncher",
but better directly, using the remaining intent filter:

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

So, within the "AndroidManifest.xml" file, there are the following changes:

e Use only one activity with the new class and the proposed intent-filter.

e I changed the product version and class to 6.0 and numeric 600, as this is the port of an existing program,
which has version number 6. and the following changes already in other sections:

e Use package name "de.elmicron.hibiscan"

e Use class "de.elmicron.hibiscan.HIBIScan" instead "tk.tcl.wish.AndroWish"

e Only minimal permissions

The resulting file looks like that:

<?xml version="1.0" encoding="utf-8"7?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="de.elmicron.hibiscan"
android:installLocation="auto"

android:versionCode="600"
android:versionName="6.0">
<application android:label="@string/app _name"
android:icon="@drawable/androwish"
android:allowBackup="true"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:hardwareAccelerated="true">
<activity android:name="de.elmicron.hibiscan.HIBIScan"

android:configChanges="orientation|keyboardHidden|keyboard|screenSize|mnc|mcc|locale|fontScale|uiMode"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

<!-- Android 2.3.3 -->
<uses-sdk android:minSdkVersion="9" android:targetSdkVersion="14" />

<!-- OpenGL ES 2.0 -->
<uses-feature android:glEsVersion="0x00020000" />

<!-- USB support -->
<uses-feature android:name="android.hardware.usb.host" />

<!-- Disable screen compatibility modes -->

<supports-screens android:smallScreens="true"
android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="true" />

<!-- Allow writing to external storage etc. -->
<uses-permission android:name="android.permission.INTERNET" />
</manifest>
Resources

Change the AppName in res/values/strings.xml

Change the Androwish icons in res/drawable-*/androwish.png (Resolutions: 72x72, 48x48, 96x96, 144x144).

Remove fonts

Christian: suggestion via E-Mail: 2 additional MB's may be economized by not including the font folder
".../jni/sdl2tk/library/fonts" as follows:

cd jni/sdl2tk
mv library/fonts

In this case, the buildin Droid* fonts are used as fallback which are included in Android firmware. They don't look so
much less attractive...

This results in a package file size of 7.8MB

On Android 5, this requires Don Quixote release (2015-04) of Androwish to run. Otherwise, Androwish does not start
on Android 5.

Release signing
Create a release key by (replace "elmicron" by your own name):

cd ~/android
keytool -genkey -v -keystore android elmicron.keystore -alias android elmicron -keyalg RSA -keysize
2048 -validity 10000

You get promted to a keystore password and the key values. I only filled common name and Organisation. Then you
get prompted to a key password.

This generates the file "~/android/android_elmicron.keystore".

Then add those lines to "~/android/androwish/ant.properties":

key.store=../android elmicron.keystore
key.alias=android elmicron
key.store.password=<mypwl>
key.alias.password=<mypw2>

and do

ant release

The final apk is in "bin/AndroWish-release.apk".

2015-06-04 Harald Oehlmann

-

{
N,
",
D

N

™ Building AndroWish

Building AndroWish

Requirements

Android SDK (version 12 or later)

Android NDK (r7 or later)

Minimum API level support by SDL is 10 (Android 2.3.3), requested API level from project.properties is 16
(Android 4.1)

CPUs supported for native shared libraries are currently armeabi and x86. This can be changed in
jni/Application.mk.

Building and Running AndroWish

Old school using Apache ant:

1
2.
3

4.

5.

6.

. Refresh the project settings using the android command from Android SDK: android update project

Review local.properties to point to the directory where the Android SDK resides.

. Use ant to build AndroWish from scratch: ant debug. This includes building the C libraries using Android NDK.

That step can be performed separately by running ndk-build in the jni directory or by invoking ant ndk-build
The resulting Android APK is built to bin/AndroWish-debug.apk which can be installed onto a device or emulator
using adb install -r bin/AndroWish-debug.apk.

Start AndroWish on device or emulator using adb from the development system: adb shell am start
tk.tcl.wish/.AndroWishLauncher.

Clean the build tree with ant clean.

New style using gradlew:

1.

2.

Setup your environment regarding ANDROID HOME and the ndk-build command e.g. by setting both a proper
PATH and ANDROID NDK HOME.

Use gradlew to build AndroWish from scratch: ./gradlew assembleDebug. As above this performs both the NDK
build and the final compile and packaging steps.

. The resulting Android APK is built to build/outputs/apk/AndroWish-debug.apk which can be installed onto a

device or emulator using adb install -r build/outputs/apk/AndroWish-debug.apk.

. Start AndroWish on device or emulator using adb from the development system: adb shell am start

tk.tcl.wish/.AndroWishLauncher.

. Clean the build tree with ./gradlew clean.

http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

e
. Y
|

\ Y Building vanillawish/undroidwish on Windows

Building vanillawish/undroidwish on Windows

By Stephan Effelsberg

The crucial part in building undroidwish on Windows is the setup of the environment. This set of instructions is the
result from building undroidwish on Windows 7 Pro 32 using MSys2.

Tool: MSys2

Install MSys2 from the homepage or use a package manager like Chocolatey. Once you have MSys2 you can install any
necessary package via its package manager pacman, e.g

pacman -S <name of package>

Some tools like CMake are nice to have a system-wide install. In this case just make sure that the tools are listed in
the PATH.

Tool: MinGW

Install MinGW, then copy some of the binaries to give them their necessary names, see for example these instructions
on the Enlightenment wiki. Unfortunately, the binaries of a Windows installation of MinGW don't have the names of the
cross compiler suite of MinGW. Consult the build script that you're finally going to call to learn about the names of the
individual binaries. This is an excerpt from build-undroidwish-win32.sh:

the toolchain
if test -d /opt/mingw64/bin ; then
use -march=1386 -mtune=1i386 for Win2000 and/or old CPUs w/o
SSE like VIA C3
echo using toolchain from /opt/mingw64/bin
PATH="/opt/mingw64/bin:$PATH"
STRIP="x86 64-w64-mingw32-strip"
0BJCOPY="x86 64-w64-mingw32-objcopy"
AR="x86 64-w64-mingw32-ar"
RANLIB="x86 64-w64-mingw32-ranlib"
CC="x86 64-wb4-mingw32-gcc -m32 -march=1386 -mtune=i386 -DTCL UTF MAX=3"
CC_OLD="x86_64-wb64-mingw32-gcc -m32 -march=1i386 -mtune=i386 -D_WIN32 WINNT=0x0400 -DTCL UTF MAX=3"
CXX="x86 64-wb64-mingw32-g++ -m32 -march=1386 -mtune=1386 -fno-exceptions -DTCL UTF MAX=3"
RC="x86 64-wb64-mingw32-windres -F pe-1i386"
NM="x86 64-w64-mingw32-nm"
export STRIP 0BJCOPY AR RANLIB CC CC OLD CXX RC NM
else
would like to use -march=i386 -mtune=i386, too, but then gcc-4.8
cannot link due to missing atomic support for this CPU, thus must
have Pentium at least
echo using toolchain prefix 1686-w64-mingw32
STRIP="1686-w64-mingw32-strip"
0BJCOPY="1686-w64-mingw32-objcopy"
AR="1686-w64-mingw32-ar"
RANLIB="1686-w64-mingw32-ranlib"
CC="1686-wb64-mingw32-gcc -m32 -march=1586 -mtune=generic -DTCL UTF MAX=3"
CC OLD="1686-w64-mingw32-gcc -m32 -march=1586 -mtune=generic -D WIN32 WINNT=0x0400 -DTCL UTF MAX=3"
CXX="1686-w64-mingw32-g++ -m32 -march=1586 -mtune=generic -fno-exceptions -DTCL UTF MAX=3"
RC="1686-w64-mingw32-windres -F pe-i386"
NM="1686-w64-mingw32-nm"
TWAPI LDFLAGS="-L${AWDIR}/undroid/compat/win32/1ib32"
export STRIP 0BJCOPY AR RANLIB CC CC OLD CXX RC NM TWAPI LDFLAGS
fi

What if ... I instead rename the environment variables in the script to reflect the names of the binaries?

When compiling libwebsockets, you may encounter a strange case of CMAKE_AR-NOTFOUND. I don't know why ar is so
special to CMake but if you search for it you can find many surprised developers who stumbled upon it.

Tool: CMake

Get it from cmake.org or a package manager.
Tool: rsync

For calling init of the build script.

pacman -S rsync

https://www.msys2.org
https://chocolatey.org
https://mingw-w64.org
https://phab.enlightenment.org/w/windows/
https://cmake.org

Tool: make

pacman -S make

Tool: nasm
nasm.us or via package manager. Needed for jpeg-turbo.

pacman -S nasm

Tool: Perl

pacman -S perl

Tool: bc
curl calls curl-config and this script needs bc to calculate the version number requirements.

pacman -S bc

Tool: pkg-config
pacman -S pkg-config

What if ... I forget pgk-config?

You will not get error messages but some modules will silently be ignored, e.g. the jsmpeg video driver. You will only
learn about this when trying to use an ignored module.

Tool: texinfo
ffidl may complain about a missing makeinfo.

pacman -S texinfo

Starting the shell

There are some options to start the MSys shell (and you surely have already started one in order to install the tools).
Make sure that the shell is being run as an MSys shell, not a MinGW shell, by checking uname. The result should look
like

MSYS NT 6.1-7601

and not like

MINGW NT 6.1-7601

Now follow the simple build instructions to get your wish.
What if ... I run a shell in MinGW mode?

Some modules may give you error messages like "Please use win32/Makefile.gcc instead." or "... is not a cygwin
compiler."

https://www.nasm.us

-

|
Y,
%,
-

"-\\
Y

B
=/ dmtx command

dmtx command

Name

dmtx::* - interface to the libdmtx.org Data Matrix Code scanner library.

Synopsis

package require dmtx

dmtx::decode ?options?
dmtx::async decode ?options?
Description

These commands are used to scan Data Matrix Codes off pixel image data.

dmtx:

dmtx:

dmtx:

dmtx:

dmtx:

:decode photoEtc ?scale timeout?

Scans the photo image photoEtc for Data Matrix Code information. Alternatively, photoEtc can be a four
element list describing a greyscale or RGB image as a byte array. The elements must be width, height,
depth and byte array of the image in this order. The optional integer parameter scale downsamples the
image before the scan takes place. The optional timeout limits the scan process to that many milliseconds.
The command returns a three element list made up of a flag indicating success (=1) or failure (=0) of the
scan process, the amount of miliseconds spent on decoding, and the scan result as a byte array.

tasync _decode photoEtc callback ?scale timeout?

Similar to dmtx: :decode but the decoder is run as a background thread and the result is presented to a
callback procedure. It requires the Tcl core being built with thread support, and a running event loop
since the callback is invoked as an event or do-when-idle handler. Three additional arguments are passed
to callback: a flag indicating success (=1) or failure (=0) of the scan process, the number of milliseconds
for decoding, and the scan result as a byte array. The optional parameters scale and timeout have the
same meaning as in the dmtx: :decode command. The default timeout value is 1000 milliseconds. Caution:
only a single thread instance is supported per Tcl interpreter, i.e. another asynchronous decode process
can only be started when a previous decode process has finished.

rasync_decode abort
Aborts a running asynchronous decode process.
tasync_decode status

Returns the current state of the asynchronous decode as a string: stopped when no asynchronous decode
thread has been started, running when a asynchronous decode is in progress, and ready when the next
asynchronous decode can be started.

tasync_decode stop

Stops the background thread for asynchronous decoding if it has been implicitely started by a prior
dmtx::async_decode. This can be useful to conserve memory resources.

ST
T n

M. . .
22 Environment Variables

Environment Variables

Some environment variables in the env array are setup on early startup of AndroWish.
env (EXTERNAL FILES)

App specific directory on external storage.
env (EXTERNAL STORAGE)

Path name of external storage (could be internal SD card).
env (EXTERNAL STORAGE2)

Path name of external storage (real external SD card).
env (HOME)

App's home directory (internal storage), usually /data/data/tk.tcl.wish/files.
env (INTERNAL STORAGE)

App specific directory on internal storage (identical with $env (HOME)).
env (LANG)

System language.
env (LD LIBRARY PATH)

Load path for shared libraries including app specific directory (usually /data/data/tk.tcl.wish/libs).
env(0BB_DIR)

On some Android versions extra stuff bundled with the app (currently unused).
env (PACKAGE CODE PATH)

Path name of the app's APK.
env (PACKAGE_NAME)

Package name where the app's main class comes from (tk.tcl.wish).
env (PATH)

Path for exec(n) including app specific directory
env(TMPDIR)

Path name for temporary files (usually /data/data/tk.tcl.wish/cache, fallbback is value of $env(HOME)).

To test if a Tcl script is executing on the Android platform sdltk android (see sdltk command) should be used.

e .,
{ 3y
| |

=/ Example Scripts

Example Scripts And Screenshots

Many packaged example scripts can be invoked on typical Android devices by a "androwish:///<pathname>" URL on the
VFS mounted /assets folder. This works with the Android web view component, Firefox, and Chrome. For Firefox, the
last path component (the tcl file) must be URL encoded, e.g. test.tcl must be written as test%2Etcl.

Tk widget demo
androwish:// /assets/sdl2tk8.6 /demos/widget, source code

Widget Demonstration

Unicode Label Demonstration

Eile This is a sample of Tk's support for Ianﬁuages that use non-Western

9. A SImpile User interrace ror viewing images character sets. However, what you will actually see below depends

10, Labelled frames i largely cn what character sets you have installed, and what you see for

11 The simple Themed Tk widgets characters that are not present varies greatly between platforms as well.

The strings are written in Tcl using UNICODE characters using the

Listboxes and Trees \UXXXX escape so as to do so in a portable fashion.

1. The 50 states Arablc: s yall 2a)

2. Colors: change the color scheme for the application rapic: dayal

3. A collection of famous and infamous sayings Trad. Chinese: EREF

4. A multi-calumn list of countries Simpl. Chinese: jLi§ _

5 A directory browser tree French: Langue francaise

Greek: EXANULKR YAWooQ

Entries, Spin-boxes and Combo-boxes Hebrew: nIay ana

1. Entries without scrollbars Hindi: B

2. Entries with scrollbars lcelandic: Islenska

3. Validated entries and password fields Japanese; BEEQUSNL, HFEEHYHT

4. Spin-boxes Korean: Cstal=e) g2

2. Lombo-hoxes Russian; PyccKUi 361K

6. Simple Rolodex-like form

i See Code » Dismiss

Taxt
1. Basic editable text

2. Text display styles -
3. Hypertext {tag bindings) Pendulurn Animaticn Demenstration
4. A text widget with embedded windows and other featu! This demonstration shows how Tel/Tk can be used to carry out
5. A search tool built with a text widaet animations that are linked to simulations of physical systems. In the left

Simple Ttk Widgets canvas is a graphical representation of the physical system itself, a
Ttk is the new Tk themed widget set. This is a Ttk themed label, E'"'-ﬁ'e pendulum, and in the right canvas is a graph of the phase space
below are three groups of Ttk widgets in Ttk labelframes. The fir, of the system, which is a plot of the angle (relative to the vertical)
are all buttons that set the current ,pﬁ“caﬁon theme when pr,ia ainst the angular velocity. The pendulum bob may be repositioned by
second group contains three sets of checkbuttons, with a separ: clicking and dragging anywhere on the left canvas.
widget between the sets. Note that the "Enabled” button control Pendulum Simulation Phase Space

whether all the other themed widgets in this toplevel are in the © Click to A t: 58
state. The third group has a collection of linked radiobuttons.
Buttons Checkbuttons Radiobuttons 4

clam Enabled () Great 8

alt || Cheese () Good &
droid | |Tomato O oK
classic 1 Basil () Poor @ See Code * Dismiss

default || Oregano Q) Awrul

2 5ee Variables = See Code » Dismiss

Screenshot taken on an i-onik TP9.7-1200QC-Ultra tablet

App Life-cylce, accelerometer, finger events

androwish:// /assets/sdI2tk8.6 /demos/android demo% 2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/widget
http://www.androwish.org/index.html/artifact/e69fb6a25fbb39fdb238c027c67954c3d610f740
androwish:///assets/sdl2tk8.6/demos/android_demo%252Etcl
http://www.androwish.org/index.html/artifact/053ec4dd63c7eda1afbee5bc12abf6cf6cde2a2e

Accelerometer
1 -3100
2 8413
3 -4639
On |[Off

Finger Events

X i
1756 1287
3820 7950
J003 1595
8813 5702
4456 2129
App Life Cycle
WillEnterBackground
DidEnterBackground

WillEnterForeground
DidEnterForeground

o
-
o

9999
2999
9999
9999
9999

e wN e
o

=lE=t=E =k =104

ooooo

Exit Console ...

Screenshot taken on a Lenovo Yoga 8 tablet

Accelerometer with canvas widget

androwish:// /assets/sdI2tk8.6 /demos/android accel%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_accel%252Etcl
http://www.androwish.org/index.html/artifact/667617d60642f61bb50a8748d57e9752542c55c2

Screenshot taken on a Lenovo Yoga 8 tablet

Device sensors

androwish:// /assets/sdI2tk8.6 /demos/android sensors%2Etcl, source code

Device Sensors
brmals6 3-axis Accelerometer
[¥]Enable
-0.0092 1.848 10,573

al3320x Light Sensor
Enable

20.00.0 0.0

bmm056 Orientation sensor
Enable
20712675 -10,704226 4 4225354

bmm056 2-axis Magnetic Field sensor
Enable

7.75-25.75-32.0

Screenshot taken on a Lenovo Yoga 8 tablet

Compass using magnetic field sensor and accelerometer

androwish:// /assets/sdl2tk8.6 /demos/android compass%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_sensors%252Etcl
http://www.androwish.org/index.html/artifact/10d05e3afbea27ba9b265d687bb5c4339400c6d7
androwish:///assets/sdl2tk8.6/demos/android_compass%252Etcl
http://www.androwish.org/index.html/artifact/35c23bc3dba9e8a76c66238c4515f497fdc4e49e

Screenshot taken on a Lenovo Yoga 8 tablet

Pinch-to-zoom with canvas widget

androwish:// /assets/sdI2tk8.6 /demos/android_zoom% 2Etcl, source code
Eliza: speech recognition and speech-to-text

androwish:// /assets/sdI2tk8.6 /demos/android_eliza%2Etcl, source code
TcIMixer: audio output and mod music playback

androwish:// /assets/tclmixer1.2.3/test% 2Etcl, source code

Simple VNC viewer

androwish:// /assets/vnc0.4/vncviewer% 2Etcl, source code

Mctivities § Mesyatem Manitor

File Edit Folacties 1 Searce Relectar Mavigabe Search Proje

History
rake_1tems Ay

tti:ihotton .coninls -text “Tonwle ... -wid
i consale shoa) _—— e — o —

Host: 192.168.43,104

gt Password: ++*
Shared
Wiew Gnhl' P ;‘:._I:-I:: .05 of 1011.0 MIE
Discannect Exit Cancel

E- o Lyvadoe| B Declaration 8 LogCag : L i H
i Sending 020.5 KIBf's
Tatal Surk 18 G0

dooded sEring "Hells wWorld, HelaTd main ot T TRRIIETOrTRFr e e ane 107 TARAralaTIne Probleem

Screenshot taken on ASUS Fonepad K004 ME371G

Barcode generation using ZINT

androwish:/ / /assets/zint2.5.0/demo% 2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_zoom%252Etcl
http://www.androwish.org/index.html/artifact/3249f06d13bb8cc12fec03904b2d1f457d9990bd
androwish:///assets/sdl2tk8.6/demos/android_eliza%252Etcl
http://www.androwish.org/index.html/artifact/005f6c74f7d50746234e7a2a37aae2e139e47097
androwish:///assets/tclmixer1.2.3/test%252Etcl
http://www.androwish.org/index.html/artifact/698da6411516e6c6c11c0d671d4cfa3e5f0a3f03
androwish:///assets/vnc0.4/vncviewer%252Etcl
http://www.androwish.org/index.html/artifact/4cd95e6bb9d81ef3d5cde7e1cc8b48a605ddad0c
androwish:///assets/zint2.5.0/demo%252Etcl
http://www.androwish.org/index.html/artifact/c5bb41c7eeeb7d4f71eff2a7b662d7005b442766

OR -

[http://www.androwish.org

Generate

Screenshot taken on a HTC One V smartphone

GPS/NMEA display

androwish: assets/sdl2tk8.6 /demos/android s% 2Etcl, source code

J0EAEEEENC

Screenshot taken on a HTC One V smartphone

Walkie-talkie using snack and UDP multicast

androwish:// /assets/snack2.2.10/tcl talkie%2Etcl, source code
Simple chat using Bluetooth serial port profile (SPP)

androwish:// /assets/sdI2tk8.6 /demos/android btchat%2Etcl, source code
TkSQLite database frontend for SQLite

androwish:/ / /assets/tksqlite0.5.11 /tksqlite% 2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_gps%252Etcl
http://www.androwish.org/index.html/artifact/f3dc47b6c9bda26fa75b2f8aff1776be62df8e64
androwish:///assets/snack2.2.10/tcl_talkie%252Etcl
http://www.androwish.org/index.html/artifact/ef0cfc9d2c169be01954b0ac07820b7910d2e1ba
androwish:///assets/sdl2tk8.6/demos/android_btchat%252Etcl
http://www.androwish.org/index.html/artifact/a50231f216f6196323065450eb69d32865a9c254
androwish:///assets/tksqlite0.5.11/tksqlite%252Etcl
http://www.androwish.org/index.html/artifact/a293b150934cbb7a79233c5e44b44dcd7c50e435

File Database Tool Help

Database SQL Comrmand
Ivtable -
maschinenlaufz:
material
parcels
parcels_constr

¥ sTable Edit [main.maschinenlaufzeit

maschinenlaufzeit status stillstand laufze &

Field Index Trigger E'” gggﬁgg gggg
us H H H E

5"'”““” HT"EEGENN : Ein 00:01:21 00:00:
datum TIMEST - Aus 00:00:00 00:02;
name TEXT - Ein 00:00:49 00:00;
status TEXT - Aus 00:00:00 00:02;
stillstand TIME - Ein 00:01:27 00:00;
laufzeit TIME - &uﬁ 00:00:00 00:02;

" 00:03:24 00:00;

: S - 00:00:00 |00:02:
TkSQLite 0,5,11 00:01:26 00:00;

Tel 8.6.2 00:00:00 00:02:
Tk 8.6.2 00:00:46 00:00:
telsglite2 N/A 00:00:00 |00:02:
tclsglite3 3.8.7 00:03:30 |00:00:
Tktable 2.11 00:00:00 00:02:
Tile 0.8.8 00:00:36 00:00:

Visoq el 00:00:00 00:02:
' 00:00:40 |00:00:

Copyright {c) 2004 - 2014 00:00:00 00:02:
OHTSUKA, Yoshio 00:00:39 00:00;
This program is free to use, 00:00:00 |00:02:
medify, extend at will. The 00:00:482 00:00;
author(s) 00:00:00 00:02;
B e iy | 209041 0000
for usage. 00:00:00 DO:Dl:T

Redistributions in any form must """ 71 "o

retain this copyright notice.
ohtsuka yoeshio@gmail.com ory

Version : 3| Encoding : utf-8 (UTF-8) |[Row : 443 line Time ; 6 msec

Screenshot taken on a Lenovo Yoga 8 tablet

Canvas 3D using camera for texturing cube surfaces

androwish:// /assets/Canvas3d1.2.1/demo/photocube®%2Etcl, source code

Screenshot taken on a Lenovo Ideatab A3000-H tablet

Interactive MIDI music

androwish:/ / /assets/music0.1/ music%2Etcl, source code

androwish:///assets/Canvas3d1.2.1/demo/photocube%252Etcl
http://www.androwish.org/index.html/artifact/d0f68f21fb0e44bbe3f0a2ea60fec938efb8aac6
androwish:///assets/music0.1/music%252Etcl
http://www.androwish.org/index.html/artifact/5e178cdc6d4b25834775a0f57a0126db8ecffd92

b
FE

Play | X Record v Notes
@ dec AA Greedt e dec A-A GeBdetx >gagyg e-ggtagdt</edcc A-AGe

o+

Screenshot taken on a Lenovo Ideatab A3000-H tablet

Piano, a pocket synthesizer

androwish:// /assets/music0.1/piano%2Etcl, source code

Data Matrix Code scanner using camera and dmtx command

androwish:// /assets/dmtx0.7.5/android _demo%2Etcl, source code

Barcode scanner using camera and zbar command

androwish:// /assets/zbar0.10/android_demo%2Etcl, source code
Minimalist WebCam in = 100 LOC

androwish:// /assets/sdl2tk8.6 /demos/android webcam% 2Etcl, source code
Tkbugz, a game requiring a VR headset and a USB or Bluetooth joystick

androwish:// /assets/tkbugz/vr bugz%2Etcl, source code

androwish:///assets/music0.1/piano%252Etcl
http://www.androwish.org/index.html/artifact/9c5639b44b21a292c879ff14ed99ab184332b4da
androwish:///assets/dmtx0.7.5/android_demo%252Etcl
http://www.androwish.org/index.html/artifact/e3892410b86641a57a9f9238f726148d4e6ed415
androwish:///assets/zbar0.10/android_demo%252Etcl
http://www.androwish.org/index.html/artifact/4ce598aa1fc82dc9a41a04992a94673cb4d863af
androwish:///assets/sdl2tk8.6/demos/android_webcam%252Etcl
http://www.androwish.org/index.html/artifact/ade494d56814fc1ba5d72886ee3233f7bed44de0
androwish:///assets/tkbugz/vr_bugz%252Etcl
http://www.androwish.org/index.html/artifact/53b62ad7dac6c148902b40886c0c5ed7ac38d8af

e
3y
|

‘/ jsmpeg SDL Video Driver

jsmpeg SDL Video Driver

An experimental SDL video driver named jsmpeg is provided since Valentine's Day 2019. It uses the technique

described in https://github.com/phoboslab/jsmpeg and https://github.com/phoboslab/jsmpeg-vnc in combination

with HTML5 and WebGL in a modern browser to provide display, mouse, and keyboard to a normal undroidwish.

This means, that the rendering is performed into a memory buffer, which is encoded into a modified MPEG-1 transport
stream, sent over a Websocket to a web browser, which performs MPEG-1 decoding and rendering into a HTML5
canvas optionally using WebGL. Likewise, mouse and keyboard events are sent on the same Websocket from the
browser back to the jsmpeg driver, transformed to SDL mouse and keyboard events and further processed by the
undroidwish application.

Frame rate and required bandwidth are moderate. Currently, 25 frames per seconds are sent at most, which require
some few hundred kilobits per second. Since April 2019 limited support for OpenGL is available for the Canvas3D and
tkZinc widgets. It requires a working EGL/OpenGL infrastructure (Linux etc.) or Windows OpenGL. On Linux this
normally requires an X11 display connection except for very recent versions of Mesa and GPU drivers, i.e. on Debian
10 and Fedora 30 the environment variable EGL_DISPLAY can be set to surfaceless in order to turn on headless
GPU mode.

For the adventurous, there is a test version for Linux x86 64 (Debian 9, Fedora 30, CentOS 7), Windows 32 bit (XP
or newer), Windows 64 bit (XP or newer), and MacOSX (tested on High Sierra). All can be run using the jsmpeg video
driver when the environment variable SDL_VIDEODRIVER has the value jsmpeg and the required FFMpeg
DLLs/shared libraries are available on the system, e.g.

POSIX
export SDL VIDEODRIVER=jsmpeg
./undroidwish-x86 64-deb9 builtin:widget -sdlwidth 800 -sdlheight 600

REM Windows
SET SDL_VIDEODRIVER=jsmpeg
undroidwish-win32.exe builtin:widget -sdlwidth 800 -sdlheight 600

Mac 0SX

export SDL VIDEODRIVER=jsmpeg

/Applications/undroidwish.app/Contents/Mac0S/undroidwish builtin:widget -sdlwidth 800 -sdlheight
600

For Windows, the required DLLs are avutil-56.dll, avcodec-58.dll, swresample-3.dll, and swscale-5.dll which are
available from https://www.ffmpeg.org/download.html and preferably loaded from

% PROGRAMFILES% \ffmpeg\bin. For Linux, the shared libraries are available per installing the distribution's
ffmpeg package(s). For MacOSX, the homebrew ffmpeg package provides the necessary shared libraries.

By default, the HTTP/Websockets port is 8080 which can be overridden with the environment variable
SDL_VIDEO_JSMPEG_PORT. Thus, the URL

http://localhost:8080

connects the browser with the jsmpeg enabled undroidwish. If the browser's WebGL implementation isn't suitable for
proper displaying the undroidwish root window, the alternate URL

http://localhost:8080/?use2d

turns off WebGL usage.

Note that all local TCP/IP addresses are bound, not just localhost. Thus, if your local TCP/IP address is 192.168.1.9,
then http://192.168.1.9:8080 will work, and provides access to your app via non-localhost devices.

HTTP AUTH

You can optionally password-protect the http port serving your app, by defining the SDL_VIDEO_JSMPEG_AUTH
variable like so:

export SDL VIDEO JSMPEG AUTH=$(echo -n user:pass | base64)

This will cause your web browser to require a username/password combination in order to display the page. For more
info about HTTP AUTH see the Wikipedia article Basic access authentication.

Screen recording

You can optionally save your entire Tk app's running to a MPEGL1 file, by defining the
SDL_VIDEO_JSMPEG_OUTFILE like so:

https://github.com/phoboslab/jsmpeg
https://github.com/phoboslab/jsmpeg-vnc
http://www.ch-werner.de/AndroWish/undroidwish-x86_64-deb9
http://www.ch-werner.de/AndroWish/undroidwish-win32.exe
http://www.ch-werner.de/AndroWish/undroidwish-win64.exe
http://www.ch-werner.de/AndroWish/undroidwish.dmg
https://www.ffmpeg.org
https://www.ffmpeg.org/download.html
https://en.wikipedia.org/wiki/Basic_access_authentication

export SDL VIDEO JSMPEG OUTFILE=data.mpg

HTML Page Title

The HTML generated to support the jsmpeg driver will automatically use the Tk window manager title to define your
web page's web title. Thus, this command in your Tcl/Tk program:

wm title . "Hello World \UlF601"

will result in your web browser titling this page tab as "Hello World &". Only the application's toplevel window (the ".
in Tk parlance) will set the browser title.

A note about colors

Due to RGB->YCbCr->RGB color conversions taking place when using the jsmpeg driver, the output colors of your
app (when viewed in a web browser) are never exactly what they would be in Tk.

For example, white #FFFFFF will render as #FEFEFE. This difference is very slight.

undroidwish - Mozilla Firefox - o x

AndroWish: jsmpeg SDL Vide X | undroidwish vl oo

< 2

(<]
o
I

(i) localhost:&

Widget Demonstration

File

1. Menus and cascades (sub-menus) =
2. Menu-buttons

3. Themed menu buttons
4. Themed toolbar Animated Wave Demonstration [x]

This demeonstration contains a canvas widget

Common Dialogs
1. Message boxes
2. File selection dialog
3. Color picker
4. Font selection dialog

Animation
1. Animated labels
2. Animated wave
3. Pendulum simulation
4. A celebration of Rube Gi

Miscellaneous
1. The built-in bitmaps

2. A dialog box with a loca
3. A dialog box with a glob

with a line item inside it. The animation
routines work by adjusting the coordinates list
of the line; a trace on a variable is used so
updates to the variable result in a change of
position of the line.

Screenshot taken in a GNOME Wayland session

ST
T n

™) Limitations of AndroWish

Limitations of AndroWish

o TheX1tl-emulationisnetthread-safe;thus it is impossible to do a package require Tk from another thread.
But multiple Tcl interps in the main thread work. Since "The Flintstones (2014-09-30)" release the X11
emulation is thread safe but many extensions are not, e.g. snack, expect etc. Your mileage may vary.

e Due to Android process start up with respect to the window system the Tcl exec command cannot be used to
start other Tk processes.

e The bandwidth of device screen resolutions is broad (100 dpi.. 500 dpi) compared to usual desktop systems.

But many elements of Tk widgets are pixel based. This is partly addressed by using icon bitmaps in various sizes
but far from being a perfect solution.

e
. Y
|

-
=/ Make minimal vanillawish binary

How to make a minimal vanillawish binary ...
... out of a running vanillawish? The same technique can be used with undroidwish, too.

we're working in a temp directory ...
file delete -force -- tmpdir[pid]

extract everything from current binary
file copy [info nameofexecutable] tmpdir[pid]

remove unwanted stuff from tmpdir[pid]
... TODO (adapt it to your requirements)
here let's keep the bare minimum
apply {keep {
foreach name [glob -tails -dir tmpdir[pid] *] {
if {$name in $keep} {
continue

file delete -force -- [file join tmpdir[pid] $name]
}
}} [list tcl8.6 tk8.6 sd12tk8.6]

the app directory to place our own stuff
file mkdir [file join tmpdir[pid] appl

add app code to tmpdir[pid]/app, at least a main.tcl
is required which provides the entry point
... TODO (example given)
apply {name {
set T [open $name w]
a very small app ...
puts $f "button .b -text {Press Me} -command exit ; pack .b"
close $f
}} [file join tmpdir[pid] app main.tcl]

rebuild a new binary, stripping the temp directory in all file names
if {$tcl platform(platform) eq "windows"} {

zipfs::mkimg myapp.exe tmpdir[pid] tmpdir[pid]
} else {

zipfs::mkimg myapp tmpdir[pid] tmpdir[pid]

remove the temp directory
file delete -force -- tmpdir[pid]

try to start the new binary if it is a wish
otherwise stdin would be needed and we can't
run in background.
if {[info command winfo] eq "winfo"} {
if {$tcl platform(platform) eq "windows"} {
catch {exec [file join [pwd] myapp.exe] < NUL: &}
} else {
catch {exec [file join [pwd] myapp] < /dev/null &}
b

done
exit

http://www.androwish.org/index.html/wiki?name=vanillawish

ST
T \l
|
|

|
N\ /
e __-/

modbus

modbus command

Name

modbus - Tcl interface to libmodbus
Synopsis

package require Tcl 8.6

package require modbus

modbus::new cmd host service
modbus::new cmd serial baud parity data stop ?slave addr?
cmd destroy

cmd connect

cmd close

cmd setchan chan

cmd response_timeout ?ms?

cmd serial mode ?mode?

cmd read bits addr ?number?

cmd read input bits addr ?number?

cmd read registers addr ?number?

cmd read input registers addr ?number?
cmd write bit addr value

cmd write register addr value

cmd write bits addr value ...

cmd write registers addr value ...

cmd set_slave slave_addr

Description
This package provides a Tcl interface to libmodbus (see http://libmodus.org) using Ffidl and TclOO.
Commands

modbus::new cmd host service

Creates a new command cmd which implements a Modbus-TCP connection object to the given host (IP
address or hostname) and service (symbolic or numeric TCP port). Further operations on that object are
carried out by invoking methods on cmd.

modbus::new cmd serial baud parity data stop ?slave addr?

Creates a new command cmd which implements a Modbus-RTU connection object on the serial line serial
with parameters baud rate, parity (N=none, O=odd, E=even), data bits, and stop bits. The optional
parameter slave addr specifies the Modbus-RTU slave address and defaults to zero. Further operations on
that object are carried out by invoking methods on cmd.

cmd destroy
Destroys the connection object cmd, releases resources and closes communications links.
cmd connect

Connects the connection object cmd to its peer (a TCP server for Modbus-TCP or a serial line for Modbus-
RTU).

cmd close
Closes the connection (either the socket or the serial line) of the connection object cmd.
cmd setchan chan

On POSIX platforms, this method duplicates the operating system handle of the Tcl channel chan and
wraps it into the cmd connection object. The Tcl channel can be closed immediately after this operation.
Depending on the constructor, the operating system handle must provide socket or tty semantics for
further I/0 methods on cmd to succeed. On Windows platforms, this method is not supported.

cmd response_time ?ms?

Queries or sets the response timeout on the connection object cmd. The timeout is specified in
milliseconds.

cmd serial mode ?mode?

http://libmodbus.org

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Queries or sets RS-232 or RS-485 mode on the Modbus-RTU connection object cmd. For RS-232 mode
must be 0, for RS-485 it must be 1.

read bits addr ?number?

Reads number coil status bits starting with address addr from the connection object cmd. Number defaults
to one.

read input bits addr ?number?

Reads number input status bits starting with address addr from the connection object cmd. Number
defaults to one.

read registers addr ?number?

Reads number holding registers starting with address addr from the connection object cmd. Number
defaults to one.

read input registers addr ?number?

Reads number input registers starting with address addr from the connection object cmd. Number defaults
to one.

write bit addr value

Writes value into the coil status bit with address addr on the connection object cmd.
write register addr value

Writes value into the holding register with address addr on the connection object cmd.
write bits addr value ...

Writes one ore more values into the coil status bits starting with address addr on the connection object
cmd.

write registers addr value ...

Writes one ore more values into the holding registers starting with address addr on the connection object
cmd.

set _slave ?slave_addr?

Sets the slave address for Modbus-RTU on the connection object cmd to slave addr.

ST

™) Muzic MIDI sound package

muzic command

Name

muzic - a MIDI sound package compatible with Muzic.
Synopsis

package require Muzic
muzic::subcommand ...

Description

muzic is a Tcl music interface to the Sonivox MIDI rendering (software synthesis) library on Android. The original
package was developed by Steve Landers and is Copyright (c) 2005 Eolas Technologies Inc. It is released under a
Tcl/BSD style license.

To use Muzic, no special provisions are needed, since it is fully integrated in AndroWish.
The Muzic API contains just five procedures:
muzic::init
Must be called once to initialize audio playback.
muzic::soundfont file

This command exists for compatibility with the original package. It can be called with no arguments or with
builtin. Everything else throws an error since the Android software synthesizer has no support for
SoundFont files.

muzic::channel channel instrument

Assigns an instrument to a channel. channel is an integer from 0 to 15 identifying the MIDI channel.
instrument is the instrument number, typically a MIDI instrument number from 0 to 127.

muzic::playnote channel pitch volume ?duration?

Plays a note on specified channel, at specified pitch and volume. The pitch is the raw MIDI pitch, as per the
general midi standard - where middle C is 60 (see
http://www.mozart.co.uk/information/articles/midinote.htm which has a table of MIDI pitch values). volume
is @ number between 0 and 100. duration is optional, and defaults to 500 (i.e. 500 ms). If a negative
duration is given, the note is played continuously. If a volume of zero is given, playback of the note ends.

muzic::close

To be called when MIDI audio playback shall be stopped in order to conserve battery power.

http://wiki.tcl.tk/14652
http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.mozart.co.uk/information/articles/midinote.htm

ST
T n

™~
5/ Releases

List of AndroWish Releases

Fossil Tag

Ten Years After

The Flux Capacitor

Eppur si muove

Asteroid Day

The Leyden Jar

Bonfire Night

The Wow! Signal

El Caballero de la Triste

Figura

Caractacus Potts

Date

2024-03-
06

2020-11-
05

2019-06-
22

2018-06-
30

2017-10-
11

2016-11-
05

2016-08-
15

2016-04-
23

2015-12-
18

Remarks

The first release of AndroWish in 2024 featuring Tcl/Tk 8.6.10, SQLite
3.45.1, SDL 2.0.6 with patches, and many other updated packages.
The minimum Android version supported is now 4.0 (formerly 2.3.3).
Some final and draft TIPs have been backported or added (97, 325,
468, 604, 610, 645, 670, 675, 678, and 679).

The first release of AndroWish in 2020 featuring Tcl/Tk 8.6.10, SQLite
3.33.0, SDL 2.0.6 with patches, and many other updated packages.
Some final and draft TIPs have been backported or added (160, 262,
302, 431, 456, 462, 496, 511, 517, 565, 574, and 586).

The first release of AndroWish in 2019 featuring Tcl/Tk 8.6.9, SQLite
3.28.0, SDL 2.0.6 with patches, and many other updated packages.
Some new extensions are included: tkvic, topcua, tcllBlend, and tcl-
fuse. A webview for the major desktop platforms is contained as a
preview. A new SDL video driver called "jsmpeg" is included in the
undroidwish builds.

Another low-impact release of AndroWish featuring Tcl/Tk 8.6.8,
SQLite 3.24.0, SDL 2.0.6 with patches, and many other updated
packages. Some new extensions are included: tclcan, modbus, snap7,
and fswatch. Build support for multiple platforms is more stable. The
Wayland variant now runs on CentOS 7.5, too, plus a frame buffer
rendering mode based on Linux kernel mode setting with direct
render mode is included.

The long overdue release of AndroWish in 2017 featuring Tcl/Tk
8.6.7, SQLite 3.20.1, SDL 2.0.5, Tkzinc 3.3.6 and many other
updated packages. Other highlights are: basic NFC support in
AndroWish, stereoscopic render modes both in the SDL based Tk and
in the 3D canvas widget, build support for more platforms in
undroidwish, e.g. FreeBSD, Openlndiana, MacOSX, Haiku, plus
support for Wayland.

This is the 3rd anniversary edition of AndroWish featuring Tcl/Tk
8.6.6, SQLite 3.15.1, and tksvg. Many other packages are updated to
newer versions, too. The undroidwish based builds now contain the
same subset of BLT (barchart, graph widgets) as AndroWish. All
builds contain a proposed TIP#302 implementation to be indifferent
with respect to wall clock changes by making computation of
durations based on a monotonic clock source if supported by the OS.

This is an update release featuring Tcl/Tk 8.6.6, SQLite 3.14.1, and
LibreSSL 2.2.9. Many other packages are updated to newer versions,
too. The undroidwish based builds now contain TWAPI/WITS
(Windows versions) and broader support for video capture (both,
Windows and Linux).

This an update release featuring Tcl/Tk 8.6.5 and SQLite 3.12.2.
Some other packages are updated to newer versions, too (SDL 2.0.4
plus patches, tcllib, pdf4tcl). OpenSSL is replaced by LibreSSL 2.2.6
and TkHTML 3 is added. This release introduces undroidwish plus an
AndroWish SDK based on undroidwish binaries.

This is mainly a bug fix and update release. Some packages are
updated to newer versions (SQLite 3.9.2, gridplus 2.11, icons 2.0,
libpng 1.2.54), the "ble" command and underlying infrastructure is
more stable, the "borg" command is improved and allows now to turn
Bluetooth on and off and to send SMS. The tkpath widget combined
with pdf4tcl now can generate PDF documents from most supported
item types including alpha blending and color gradients. The
AndroWish SDK is improved and now able to run on all supported
Tcl/Tk desktop platforms.

http://www.androwish.org/index.html/timeline?t=Ten+Years+After
http://www.androwish.org/index.html/timeline?t=The+Flux+Capacitor
http://www.androwish.org/index.html/timeline?t=Eppur+si+muove
http://www.androwish.org/index.html/timeline?t=Asteroid+Day
http://www.androwish.org/index.html/timeline?t=The+Leyden+Jar
http://www.androwish.org/index.html/timeline?t=Bonfire+Night
http://www.androwish.org/index.html/timeline?t=The+Wow!+Signal
http://www.androwish.org/index.html/timeline?t=El+Caballero+de+la+Triste+Figura
http://www.androwish.org/index.html/timeline?t=Caractacus+Potts

Back to the Future

Something wicked this way

comes

The Blues Brothers

Don Quixote

Pi Day

Groundhog Day

Peter Pan

All things are full of fools

The Gunpowder Plot

2015-10-
21

2015-08-
22

2015-06-
16

2015-04-
23

2015-03-
14

2015-02-
02

2014-12-
29

2014-12-
07

2014-11-
05

This release adds full Unicode 8.0 support including Emojis by using
32 bits for the internal representation of Unicode codepoints and up
to 4 byte long UTF-8 sequences (potentially incompatible with Tcl
versions on other platforms). An initial AndroWish SDK is provided
which simplifies packaging of user defined trimmed down APKs
(Android packages). The tclepeg package has been added to make
JPEG files into thumbnails. Some other packages are updated to
newer versions: SQLite 3.9.1, BWidget 1.9.9, and RAL 0.11.7.

This release adds various new "borg" minor commands, e.g. to read
images from the device camera(s) into Tk photo images, VecTcl 0.2,
and interfaces to the ZBar and libdmtx barcode scanners. SQLite is
updated to version 3.8.11.1. Subpackages were updated to newer

upstream versions, and many bugs were fixed.

This release adds a Muzic compatible MIDI sound package to
AndroWish. SQLite is updated to version 3.8.10.2. The tkpath widget
and Bluetooth Low Energy module have been improved. Bugs in the
Xlib emulation have been fixed. The "borg" command supports the
new minor commands "trace" and "brightness".

This release adds support for Bluetooth Low Energy (aka Bluetooth
Smart or Bluetooth 4.0) and the tkpath widget to AndroWish. SQLite
is updated to version 3.8.9. Many bugs in the Xlib emulation and in
the ZIP virtual filesystem have been fixed. TrueType font rendering
speed for Tk widgets is improved. The "borg" command supports the
new minor commands "broadcast", "providerinfo", and "queryconsts".

This is mainly a bug fix and update release. Many little annoying
problems in the Xlib emulation and in AndroWish startup were fixed:
transient window handling, mouse/touch coordinate translation,
loading of supplemental Java classes for Bluetooth and USB, etc.
Many packages are updated to newer versions: Tcl/Tk 8.6.4, SQLite
3.8.8.3, tIs 1.6.4, TclWS 2.3.8, itcl 4.0.3, itk 4.0.1, OpenSSL 1.0.1],
curl 7.41.0, tdbc* 1.0.3, and thread 2.7.2. The "borg" command has
some new minor commands "systemproperties" and "phoneinfo" plus
phone related virtual events.

This release adds expect 5.45.2 and support for joysticks/game
controllers to AndroWish. Many packages are updated: SQLite 3.8.8.2
including the ICU extension, nsf 2.0.0, tkimg 1.4.3, tls 1.6.4, trofs
0.4.8, and tklib to its latest upstream version. Some bugs in the X11
emulation are fixed: listbox selection, font metrics, dashed lines,
various crashes. The built in ZIP file system is improved and fixes long
standing issues with glob -directory.

This is mainly a bug fix release which improves stability of the 3d
canvas widget, fixes "wm attributes -fullscreen" and on-screen
keyboard handling, and adds proper support of the "sdltk
screensaver" command. SQLite is updated to version 3.8.7.4, and the
mentry and tablelist packages to their latest upstream versions. A
separately packaged TkChat for Android is available which needs an
installed AndroWish on the device.

Stultorum plena sunt omnia (Marcus Tullius Cicero). Tcl and Tk are
updated to version 8.6.3, SQLite to version 3.8.7.3. The brand new
feature: DRH's 3d canvas widget now runs on Android! It uses an
OpenGL to OpenGLES 1.1 emulation layer and renders to an off-
screen texture which later is copied into the framebuffer and
displayed by SDL which on most modern tablets/smartphones uses
OpenGLES 2 for this task. YMMV in terms of stability of the 3d canvas
depending on the quality of the device vendor's OpenGLES
implementation.

Remember, remember AndroWish's first anniversary. The root
window now can be zoomed and panned with two and three fingers,
respectively. SQLite is updated to 3.8.7.1 and threading support is
more stable.

http://www.androwish.org/index.html/timeline?t=Back+to+the+Future
http://www.androwish.org/index.html/timeline?t=Something+wicked+this+way+comes
http://www.androwish.org/index.html/timeline?t=The+Blues+Brothers
http://www.androwish.org/index.html/timeline?t=Don+Quixote
http://www.androwish.org/index.html/timeline?t=Pi+Day
http://www.androwish.org/index.html/timeline?t=Groundhog+Day
http://www.androwish.org/index.html/timeline?t=Peter+Pan
http://www.androwish.org/index.html/timeline?t=All+things+are+full+of+fools
http://www.androwish.org/index.html/timeline?t=The+Gunpowder+Plot

The Flintstones 2014-09- Yabba dabba doo! The most prominent new feature is threading
30 support in the X11 emulation layer allowing "package require Tk" from
a Tcl thread. The tclral package is updated to version 0.11.2.

The Great Moon Hoax 2014-09- Lunar features: Tcl/Tk updated to version 8.6.2. Packages tclxml,
16 snack, tclws, tclsoap, and vu widgets added. New virtual events and
commands to deal with GPS/NMEA and tethering information.
Drawing/rendering now performed in RGB888 instead of RGB565.

The Wizard of Oz 2014-08- Behind the curtain: SQLite updated to 3.8.6, OpenSSL updated to
17 1.0.1h, many icons now take the screen's pixel density into account,
accelerometer and magnetic field sensors now report proper
orientation data.

Alice In Wonderland 2014-07-

28 Initial fossil import. Follow the white rabbit.

http://www.androwish.org/index.html/timeline?t=The+Flintstones
http://www.androwish.org/index.html/timeline?t=The+Great+Moon+Hoax
http://www.androwish.org/index.html/timeline?t=The+Wizard+of+Oz
http://www.androwish.org/index.html/timeline?t=Alice+In+Wonderland

ST
T n

N
7/ rfcomm command

rfcomm command

Name

rfcomm - transfer data over Bluetooth serial port profile; akin to the Tcl socket command.
Synopsis

package require Rfcomm
rfcomm ?-myaddr addr? ?-myport myport? ?-async? host port
rfcomm -server command ?-myaddr addr? port

Description

This command is used to obtain a channel which is able to transfer data over Bluetooth's serial port profile (SPP or
SP). The arguments are nearly identical to the Tcl socket command. It returns a client or server channel handle. Client
channels may be used with gets, read, puts, fconfigure, and close. Server channels return a new client channel in
the command callback when an incoming connection was established.

For client channels (first command form), the host parameter must be given as a one- or two-element list: the first
element is the Bluetooth address of the remote device, and the (optional) second element is the UUID of the remote
service. If omitted the standard Bluetooth UUID for the Serial Port Profile 00001101-0000-1000-8000-00805F9B34FB is
used. The non-blocking connection mode (-async specified) uses readability of the channel to indicate connection
state. This is different to normal socket channels, where writability provides this information. On Android, the local
address of the client socket specified in the optional addr parameter is ignored.

For server channels, the first element of the addr parameter is the UUID for the local SDP (Service Discovery Protocol)
record, i.e. the application identifier, and the optional second element is the friendly name of the service as advertised
over SDP. On some Android versions the friendly name may not be an empty string, otherwise incoming connection
requests are not fulfiled. The port parameter is usually ignored and should be specified as 0.

ST

1/ sditk command

sditk command

Name

sdltk - exposure of the SDL2 (Simple DirectMedia Layer) API.
Synopsis

sdltk option ?arg ...?

Description

This command is used to control portions of the Android (or Windows or Linux) system that the SDL2 framework
exposes. Actual data processing for this framework is achieved by having handlers for virtual events.

sdltk powerinfo

Returns a list of key-value pairs describing the state of the battery. The keys are state, seconds, and
percent. The possible values for the state are onbattery, nobattery, charging, charged, and unknown. The
other items are reported as integer numbers.

sdltk accelerometer on|off

Turns event reporting of the device's accelerometer on or off. Creates top-level virtual events
<<Accelerometer>> when turned on. This command is not usable on Windows and Linux.

sdltk accelbuffer axis

Returns the accelerometer values for axis (1..3) which have been read during the last second as a list of
integer values in the range -32768 .. 32767. The time resolution is identical with the framerate (20 ms).
The values can be read out anytime independent of the accelerometer event enable state. The buffer is
filled based on occurrences of the <<Accelerometer>> virtual event, missed values with respect to the
framerate are interpolated. This command is not usable on Windows and Linux.

sdltk textinput ?on|off ?x y ?hint???

Returns the state of the virtual keyboard or switches the virtual keyboard on or off. The optional
coordinate pair is a hint for the system where the insertion cursor is displayed in screen coordinates. This
allows the system to adjust the application's screen in order to display the insertion cursor when the
virtual keyboard is active. The entry, ttk::entry, text, and spinbox widgets have standard bindings which
activate text input on left mouse button press (or equivalent touch event) if the widget's state is not
disabled. Activation of text input for these widgets can be turned off entirely by providing a dummy
bindtag named Sd1TkNoTextInput. Android specific: the hint parameter is an integer which controls the
kind of virtual keyboard to be displayed. Known values are 0 (normal keyboard), 2 (number input), 3
(phone number input), 4 (date/time input).

sdltk android
Returns true when running on Android, false otherwise, i.e. when built for Windows or Linux platforms.
sdltk framebuffer

Returns true when the video driver resembles a framebuffer, i.e. no windowing manager is available.
Currently this is the case for Android, the Raspberry Pi video driver (RPI), the Linux KMSDRM video driver,
and the jsmpeg video driver.

sdltk isandroidtv

Returns true when running on an AndroidTV device (currently untested).
sdltk ischromebook

Returns true when running on a Chromebook (currently untested).
sdltk maxroot

Returns the maximum size of the root window as two element list made up of width and height in pixels.
The maximum size is device dependent and determined by the maximum texture size of the underlying
OpenGL/OpenGLES drivers.

sdltk root ?width height?

When invoked without width and height parameters the command returns the current size of the root
window as two element list of integers. When width and height are given, the root window is resized to

the size given. When both width and height are given as zero, the root window is resized to the device
screen size.

sdltk vsync

Waits until the next screen refresh and returns the number of screen refreshes which happened during
that wait. The maximum wait time is limited to 20 milliseconds (the internal tick rate for screen updates)
but can be longer due to system load.

sdltk viewport ?x y ?width height??

Changes the viewport (root window to device screen) to allow zooming and panning of the root window.
When invoked without parameters, the current viewport settings are returned as a four element list of
integers. When the x and y parameters are given, the viewport is shifted that x and y are shown in the
top-left corner of the screen. When all four parameters are given, the viewport is adjusted accordingly, i.e.
width and height determine the zoom factor, and x and y the top-left corner of the view. Note however,
that the aspect ratio is retained, i.e. the given parameters are adjusted to keep the aspect.

sdltk touchtranslate ?mask?

Controls touchscreen event translation, or reports the current translation state. mask is a bit mask
controlling various translations. Bit 0 (mask 1) turns on translation of middle/right mouse buttons, i.e. fast
wipes with one finger are translated to mouse button 2 press/motion/release events to allow scrolling of
listboxes, entries, and text widgets. Slow wipes still deliver mouse button 1 motion events. Holding down
one finger for about a second is translated into mouse button 3 press for context menus. Bit 1 (mask 2)
turns on pinch-to-zoom with two fingers which is reported as a virtual event named <<PinchToZoom>>. Bit
2 (mask 4) turns on pinch-to-zoom and wipes for zooming and panning the root window. When both, bits
1 and 2 are on (mask equals 6), zooming the root window requires three instead of two fingers and
panning four instead of three fingers. Bit 3 (mask 8) turns on translation of finger events to the current
viewport settings, i.e. the <<FingerUp>>, <<FingerDown>>, and <<FingerMotion>> events are translated to
the current viewable portion of the root window instead of the device screen. Bit 4 (mask 16) turns on
reporting of finger down/up events for up to 10 fingers as <ButtonPress> and <ButtonRelease> events
with button numbers 10 to 19. However, no provisions are taken to ensure proper implicit button grabs
like a real X server would do, thus use this feature with caution. The default touchscreen translation mode
on startup is mask 13 (bits 0, 2, and 3 are on), i.e. everything except <<PinchToZoom>> and finger
down/up as <ButtonPress>/<ButtonRelease> is enabled. On Windows and Linux platforms only bit 3 (mask
8) to control the viewport is supported.

sdltk screensaver ?on|off?
Turns the screen saver on or off or reports the current state of the screensaver.
sdltk joystick ids

Returns a list made up joystick ids (in SDL2 referred to as joystick instance identifiers) which are reported
in related virtual events. These ids are integer numbers which increase for each new detected joystick.

sdltk joystick name id

Returns the name of the joystick identified by id.
sdltk joystick gquid id

Returns the globally unique id (GUID, 128 bit string) of the joystick identified by id.
sdltk joystick numaxes id

Returns the number of axes of the joystick identified by id.
sdltk joystick numballs id

Returns the number of balls of the joystick identified by id.
sdltk joystick numbuttons id

Returns the number of buttons of the joystick identified by id.
sdltk joystick numhats id

Returns the number of hats of the joystick identified by id.
sdltk addfont filename

Adds TrueType font(s) contained in filename and returns the font family names which were added. If the
font already has been loaded an error is thrown.

sdltk hasgl
Returns true when OpenGL support is available, e.g. for the 3D canvas widget.

sdltk log priority message

Outputs the log message message using SDL's logging facility. priority specifies the priority of the log
message and must be one of verbose, debug, info, warn, error, or fatal (from lowest to highest).

sdltk deiconify
Deiconifies the SDL root window (not usable on Android and Wayland).
sdltk fullscreen

Makes the SDL root window into a fullscreen window (not usable on Android and Wayland). The SDL root
window must be resizable (command line option -sdlresizable).

sdltk iconify
Iconifies (minimizes) the SDL root window (not usable on Android and Wayland).
sdltk maximize

Maximizes the SDL root window (not usable on Android and Wayland). The SDL root window must be
resizable (command line option -sdlresizable).

sdltk restore

Restores the last unmaximized geometry of the SDL root window (not usable on Android and Wayland).
sdltk withdraw

Withdraw (hides entirely) the SDL root window (not usable on Android and Wayland).
sdltk opacity value

Query or set the opacity of the SDL root window. value must be a floating point number between 0.0 and
1.0 (not usable on Android). On POSIX operating systems the window manager must support transparent
toplevels for this setting having an effect.

sdltk fonts

Returns a list made up of font information in the form of three elements XLFD, file name, font index of all
registered fonts.

sdltk vrmode ?mode ?distortion rescale??

Experimental VR headset mode currently only supported on the Android platform. If mode is specified, it
changes the VR headset mode to one of the following: Mode 0 for normal operation, in mode 1 the root
window is duplicated along its horizontal axis and scaled up or down, in mode 2 the root window must be
managed as left and right halves by the application, and in mode 3 the root window is duplicated along its
horizontal axis without scaling. For all modes except mode 0 touch screen panning and zooming on
Android is turned off and touch coordinates in X are reported equal for both left and right halves of the
screen. All modes except mode 0 turn on a shader performing a barrel distortion (when OpenGL ES 2 is
available) which theoretically compensates the effect of lenses of a VR headset. The optional parameters
distortion and rescale, if present, must be specified as floating point numbers and control the degree of
distortion. In order to flip the image(s) horizontally and/or vertically, mode can be bitwise or'ed with 4
(horizontal flip) and/or 8 (vertical flip) for all modes except 0. If mode and additional arguments are omitted,
the currently active mode including the distortion control parameters are returned as a Tcl list of three
elements.

sdltk pointer ?flag?

Queries or sets the state of the mouse pointer shape. If present, flag must be a boolean value and
specifies the new state. If not present, the current state is returned as 0 (off) or 1 (on).

sdltk touchcalibration ?xmin xmax ymin ymax swapxy?

Queries or sets the calibration data for resistive touchscreens supported on certain SDL video drivers
(currently Linux EVDEV devices with KMSDRM or RPI video drivers). The calibration data consists of five
integer numbers which are returned as a list, when the command is called without parameters.

sdltk size ?width height?

Queries the size of the enclosing SDL root window when width and height parameters are omitted. A two
element list is returned with the current width and height in pixels. If parameters are given, the enclosing
SDL root window is resized respectively, provided that the command line parameter -sdlresizeable was
specified and the command line parameter -sdlfullscreen was not specified on startup. However,
changing the SDL root window size is not supported on framebuffer like devices (see sd1tk framebuffer).

Touchscreen and Accelerometer Events

Using the sdltk framework usually requires liberal use of virtual event handlers. The virtual events include:

<<Accelerometer>>

Event associated with the accelerometer (activated with sdltk accelerometer on). %s is substituted with
the accelerometer axis {1..3} and %x with the accelerometer value in the range {-32768...+32767}. This
event is reported to toplevel widgets only.

<<FingerDown>>

A touch event.
<<FingerUp>>

A touch completion event.
<<FingerMotion>>

A touch movement (sliding) event. The fields %x and %y are substituted with the finger position scaled to
{0...99997} of the device screen or viewport, %X and %Y with the motion difference scaled to {-
9999...499997}, %t with the pressure scaled to {0...9999}, and %s with the finger identifier {1...103}. These
substitutions are performed for all finger related touch events.

<<PinchToZoom>>

A zoom gesture event. %X and %Y are substituted with the root window coordinate of the center of the two
fingers, %x with the distance between the two fingers, and %y with the angle measured in 64 times degrees
CCW starting at 3 o'clock. The finger state is reported in the %s substitution as 0 (zoom motion), 1 (zoom
start, i.e. 2nd finger down event), 2 (zoom end by 1st finger up event), 3 (zoom end by 2nd finger up
event).

Joystick Events

Following virtual events are reported for joysticks and game controllers:
<<JoystickAdded>>, <<JoystickRemoved>>

Event generated when a joystick or game controller is plugged or unplugged. The field %X is substituted
with the joystick id (instance identifier in SDL2 terminology).

<<JoystickMotion>>

Similar to <<Accelerometer>> this event is reported when the position of the joystick has changed. An
additional substitution is made for %X which receives the joystick id (instance identifier in SDL2
terminology).

<<TrackballMotion>>

A joystick trackball has moved. The fields %x and %y are substituted with the deltas of the move, %s with
the trackball number counted from 1, the field %X indicates the joystick id.

<<HatPosition>>

A joystick hat has changed. The field %x is substituted with the value of the hat, %s with the hat number
counted from 1, the field %X indicates the joystick id.

<<JoystickButtonUp>>, <<JoystickButtonDown>>

A joystick button was pressed or released. The field %s is substituted with the button number counted
from 1, the field %X indicates the joystick id.

Events related to the device screen
<<ViewportUpdate>>

This event is sent to toplevel widgets when the viewport has changed. %x and %y are substituted with the
viewport offset (top-left corner of the screen), %X and %Y with the width and height, respectively, and %s
with the scale factor (relation of root window size to displayed size) scaled to 10000.

Events related to the app life-cycle

These events are direct translations from SDL events (SDL_APP_* in SDL header files) and depend on platform
support. They are reported to toplevel widgets only.

<<LowMemory>>

System is in low memory situation. Although implemented for Android and iOS, this event was never
observed in reality.

<<Terminating>>

App is terminating. Although implemented for Android and iOS, this event was never observed in reality,
maybe due to timing regarding threads.

<<WillEnterBackground>>
App's screen will be put in background.
<<DidEnterBackground>>
App's screen is in the background.
<<WillEnterForeground>>
App's screen will be put in foreground. On Android, not reported on startup of the app.
<<DidEnterForeground>>
App's screen is in the foreground. On Android, not reported on startup of the app.

Note that on Android the system may kill an app at any time due to low memory situations. In order to keep some
app state persistent, the best option is to record each change immediately. Another option is using the
<<WillEnterBackground>> virtual event since it may be received before unexpected app termination.

Accelerometer Example

proc showaccel {canvas axis value} {

set ix 0
set iy 0
if {$axis == 1} {

set ix [expr {$value / 256}]
} elseif {$axis == 2} {

set iy [expr {$value / 256}]
} elseif {$axis == 3} {

set ::pos(t) [expr {($value / 256) % 360}]
} else {

return

}

if {![info exists ::pos(x)1} {
set ::pos(x) [expr [w1nfo width $canvas] / 4]
set ::pos(y) [expr [winfo height $canvas] / 4]
set ::pos(t) O

}

set ::pos(x) [expr {$::pos(x) + $ix}]

set ::pos(y) [expr {$: pos(+ $iy}]

if {$::pos(x) < 50} {
set ::pos(x) 50

} elseif {$::pos(x) > [winfo width $canvas] - 50} {
set ::pos(x) [expr {[winfo width $canvas] - 50}]

}

if {$::pos(y) < 50} {
set ::pos(y) 50

} elseif {$::pos(y) > [winfo height $canvas] - 50} {
set ::pos(y) [expr {[winfo height $canvas] - 50}]

}
if {$axis == 3} {
$canvas delete a
set x0 [expr {$::pos(x) - 48}]
set x1 [expr {$x0 + 96}]
set y0 [expr {$::pos(y) - 48}1]
set yl [expr {$y0 + 96}]
$canvas create arc $x0 $y0 $x1 $yl -fill yellow -outline red \
-width 6 -start [expr {330 - $::pos(t)}] -extent -300.0 -tags a

}

wm attributes . -fullscreen 1

canvas .c -bg black -bd 0 -highlightthickness 0

pack .c -side top -fill both -expand 1 -padx 0 -pady 0

set f [open [info script]]

.C create text 20 120 -anchor nw -tag s -font {Courier 5} -text [read $f] \
-fill gray50

close $f

button .c.x -text Exit -command {exit 0}

.C create window 30 60 -anchor nw -tag x -window .c.X

bind . <<Accelerometer>> {showaccel .c %s %x}

sdltk accelerometer on

Pinch-to-zoom Example

proc showzoom {canvas rootx rooty dist angle state} {
$canvas itemconf t -text "XY: $rootx,$rooty L: $dist P: $angle S: $state"”
$canvas delete a
state 0 -> zoom motion
state 1 -> zoom start
state 2 -> zoom end, 1st finger up
state 3 -> zoom end, 2nd finger up
if {$state < 2} {

set phi [expr {$angle / 64.0}]

set x0 [expr {$rootx - [winfo rootx $canvas] - $dist / 2}]

set x1 [expr {$x0 + $dist}]

set yo0 [expr {$rooty - [winfo rooty $canvas] - $dist / 2}]

set yl [expr {$y0 + $dist}]

$canvas create arc $x0 $y0 $x1 $yl -fill yellow -outline red -width 6 \
-start [expr {330 - $phi}] -extent -300.0 -tags a

}

wm attributes . -fullscreen 1

sdltk touchtranslate 15 ;# turn <<PinchToZoom>> on

canvas .c -bg black -bd 0 -highlightthickness 0

pack .c -side top -fill both -expand 1 -padx 0 -pady 0

set f [open [info script]]

.C create text 30 120 -anchor nw -tag s -font {Courier 6} -text [read $f] \
-fill gray50

close $f

.C create text 30 30 -anchor w -fill green -tag t -font {Helvetica 16} \
-text "Try pinch-to-zoom with two fingers"

button .c.x -text Exit -command {exit 0}

.C create window 30 60 -anchor nw -tag x -window .cC.X

bind .c <<PinchToZoom>> {showzoom %W %X %Y %X %y %S}

Disable Android keyboard input to a text widget

bindtags .mywidget [list Sd1TkNoTextInput {*}[bindtags .mywidget]]

e
T A
|
i

.-
2 snap?

snap7 command

Name
snap7 - Tcl interface to the Snap?7 library
Synopsis

package require Tcl 8.6
package require snap7
snap7::new cmd

cmd destroy

cmd connect addr port rack slot
cmd disconnect

cmd conntype type

cmd param ?name? ?value?

cmd isconnected

cmd pdulength

cmd dbread db start count
cmd dbreada db start count
cmd dbwrite db start data ...
cmd dbwritea db start bytes

Description
This package provides a Tcl interface to the Snap7 library (see http://snap7.sourceforge.net/) using Ffidl and TclOO.
Commands

snap7::new cmd

Creates a new command cmd which implements a Snap7 connection object. Further operations on that
object are carried out by invoking methods on cmd.

cmd destroy
Destroys the connection object cmd, releases resources and closes communications links.
cmd connect addr port rack slot

Connects the connection object cmd to its peer using the IP address addr, the TCP port nhumber port and
further address information (rack and slot numbers).

cmd disconnect
Closes the connection of the connection object cmd.
cmd conntype type

Sets the connection type of the connection object cmd. Must be called before a connection is made using
the connect method. Valid values for type are 1 (PG), 2 (OP), and 3 (basic).

cmd param ?name? ?value?

If invoked without arguments, returns a list of parameter names which can be queried or set on the
connection object cmd. If name is provided, a query of this named parameter is performed. If both, name and
value are provided, the named parameter is set to the value given.

cmd isconnected

Returns true or false depending on connection state of the connection object cmd.
cmd pdulength

Returns a two element list made up of requested and negotiated PDU length of the connection object cmd.
cmd dbread db start count

Reads count bytes beginning at start from the data block db using the connection object cmd. Data is
returned as a list of integer numbers.

cmd dbreada db start count

Reads count bytes beginning at start from the data block db using the connection object cmd. Data is

http://snap7.sourceforge.net/

returned as a byte array.
cmd dbwrite db start data ...

Writes the numbers specified by data and following arguments as bytes beginning at start into the data
block db using the connection object cmd.

cmd dbwritea db start bytes

Writes the byte array bytes beginning at start into the data block db using the connection object cmd.

ST
T n

™~
5 tclcan

can command

Name

can - Tcl interface to Linux SocketCAN
Synopsis

package require Tcl 8.6

package require tclcan

can bcmopen ifname

can bitrate ifname ?rate? ?sample point?
can bittiming ifname

can bitttiming const ifname

can berr ifname

can clock ifname

can close chan

can ctrlmode ifname ?mode ...?

can devstat ifname

can dump chan

can interfaces

can open ifname

can read chan

can restart ifname

can restart ms ifname ?ms?

can start ifname

can state ifname

can stop ifname

can write chan canid data ?ifindex?
can write chan opcode flags count timel time2 canid ?ifindex ...?

Description

This package provides Tcl support for Linux SocketCAN CAN_RAW and CAN_BCM socket types. The package
implements a new channel type and a Tcl command to perform operations on these channels. The standard gets,
puts, and read Tcl commands are not supported, but close, fconfigure, and fileevent are available as for normal
channels, e.g. sockets. When the libsocketcan shared library is available, various subcommands can be used to
manage CAN interfaces, too.

Commands

can bcmopen ifname

Opens a channel by creating a broadcast manager socket (type CAN_BCM) on the given CAN interface
ifname. If ifname is specified as an empty string, the channel is bound to all CAN interfaces. The command
returns an identifier for the channel which is to be used in subsequent can read and can write commands.

can bitrate ifname ?rate? ?sample point?

Gets or sets the bitrate rate (and sets optional sample point to sample point) on the CAN interface
ifname.

can bittiming ifname

Retrieves the current bit timing of the CAN interface ifname. For details refer to
/usr/include/can_netlink.h.

can bittiming const ifname

Retrieves configuration on bit timing of the CAN interface ifname. For details refer to
/usr/include/can_netlink.h.

can berr ifname

Retrieves error counters of the CAN interface ifname. The result is a dictionary made up of the keys txerr
and rxerr with respective integer error counters.

can clock ifname

Retrieves the clock frequency of the CAN interface ifname. For details refer to
/usr/include/can_netlink.h.

can close chan

Closes the channel chan which was formerly obtained by can open. This is equivalent to invoking the close
command with chan as parameter.

can ctrlmode ifname ?mode ...?

Gets or sets modes on the CAN interface ifname. If no mode is specified, the current active modes are
returned as a list. Otherwise, mode must be one or more words of loopback, listenonly, 3 samples,
one_shot, berr _reporting, fd, and presume_ack. In order to turn a mode off, prefix the word with a minus
sign. Likewise, to turn it on, a plus sign may be optionally used as prefix.

can devstats ifname

Retrieves device statistics as a dictionary. For details refer to /usr/include/libsocketcan.h and
/usr/include/can_netlink.h.

can dump chan

Reads a CAN_RAW or CAN_BCM message off chan and returns a formatted representation of it as a list.
The list is empty if no CAN message was pending on chan.

Otherwise, for CAN_RAW channels the list has five or six elements which are: 1. an integer time stamp
equivalent to clock microseconds, 2. the interface index (see can interfaces), 3. the CAN identifier as a
hexadecimal string with Ox prefix, 4. a frame format tag of the CAN message as EFF (extended frame
format) or SFF (standard frame format) optionally followed by |RTR (remote transmission request) or |ERR
(error frame), 5. the data length as a decimal number, and optionally 6. the data portion of the CAN
message as hexadecimal dump without blanks and prefix.

For CAN_BCM channels the list is made up of: 1. an integer time stamp equivalent to clock
microseconds, 2. the interface index (see can interfaces), 3. the major CAN identifier as a hexadecimal
string with Ox prefix, 4. a frame format tag as described above, 5. the BCM opcode as one of TX STATUS,
TX_EXPIRED, RX STATUS, RX TIMEOUT, or RX CHANGED, 6. the BCM flags separated by vertical bars (SETTIMER,
STARTTIMER, TX_COUNTEVT, TX_ANNOUNCE, TX_CP_CAN ID, RX_FILTER ID, RX CHECK DLC, RX NO AUTOTIMER,
TX_RESET MULTI IDX, and RX RTR FRAME), 7. the BCM count field, 8. the first BCM interval field as floating
point number, 9. the second BCM interval field as floating point number, optionally 10. to 13. describing the
first CAN frame as CAN identifier (hexadecimal string), the frame format tag (EFF, SFF, etc.), the data
length, and the payload as hexadecimal dump. Fields 10. to 13. repeat for the respective number of CAN
frames contained in the BCM message.

can interfaces

Returns a list of CAN network interface names and indices suitable for can open, can read, can write and
link management subcommands.

can open ifname

can

can

can

can

can

Opens a channel (raw AF_CAN socket) on the given CAN interface ifname. If ifname is specified as an
empty string, the channel is bound to all CAN interfaces. The command returns an identifier for the channel
which is to be used in subsequent can read and can write commands.

read chan

Reads a CAN_RAW or CAN_BCM message off chan as a list. The list is empty if no CAN message was
pending on chan.

Otherwise, for CAN_RAW channels it is made up of four elements, 1. the CAN identifier as an integer
number including flags as explained below, 2. the data portion of the CAN message as a byte array, 3. the
interface index of the CAN interface the CAN message was received from, and 4. a boolean value indicating
if more CAN messages can be read using can read.

For CAN_BCM channels it is made up of at least seven elements: 1. the interface index, 2. the major CAN
identifier (see above), 3. the BCM operation as one of TX STATUS, TX EXPIRED, RX STATUS, RX TIMEOUT, or
RX_ CHANGED, 4. the BCM flags as an integer number, 5. the BCM count field as an integer number, 6. the first
BCM interval field as a floating point number, and 7. the second BCM interval field as a floating point number.
When CAN frames are part of the BCM message, each frame is a pair of CAN identifier as integer number
and the payload as byte array of length 0 to 8 for normal frames or an integer number for RTR frames.

restart ifname
Performs a link restart on the CAN interface ifname.
restart ms ifname ?ms?

Gets or sets the restart timer of the CAN interface ifname. ms must be specified as positive integer number
of milliseconds.

start ifname
Performs a link startup on the CAN interface ifname.

state ifname

Retrieves the linmk state of the CAN interface ifname. The result is one of error _active, error_warning,
error_passive, bus off, stopped, sleeping, or unknown.

can stop ifname
Performs a link stop on the CAN interface ifname.
can write chan canid data ?ifindex?

Writes a CAN_RAW message to chan. canid is the CAN identifier as integer number, data a byte array of
the data to be sent. The optional ifindex is the CAN interface index (see can interfaces) on which the
message is to be sent. It is mandatory to specify ifindex when chan is bound to all interfaces, i.e. the
interface name on can open was an empty string.

can write chan opcode flags count timel time2 canid ?ifindex ...?

Writes a CAN_BCM message to chan. opcode must be a BCM operation out of the set TX SETUP, TX DELETE,
TX _READ, TX SEND, RX SETUP, RX DELETE, and RX READ. flags must be a list with zero or more elements of
the set SETTIMER, STARTTIMER, TX COUNTEVT, TX ANNOUNCE, TX CP_CAN ID, RX FILTER ID, RX CHECK DLC,
RX_NO_AUTOTIMER, RX_ANNOUNCE RESUME, TX_RESET MULTI IDX, and RX_RTR FRAME. count is the counter for
the first interval timel. The intervals timel and time2 must be given as floating point numbers of seconds.
canid is the major CAN identifier for the BCM message. ifindex is the interface index which is required, if
the CAN_BCM channel was bound to all interfaces. All following optional arguments make up CAN frames
and must be pairs of a CAN identifier and a byte array of 0 up to 8 bytes for normal frames, or an integer
as data length for RTR frames.

CAN Identifiers

The Linux SocketCAN interface defines special bits in CAN identifiers which are made up of the three most significant
bits in a 32 bit integer: 0x80000000 for extended frame format (EFF), 0x40000000 for remote transmission request
(RTR), and 0x20000000 for error frames (ERR). The lower 29 (for EFF) or 11 (for SFF) bits make up the CAN identifier.
In order to retrieve the real CAN identifier of a received CAN message from can read a binary and with the masks
Ox1FFFFFFF or Ox7FF must be carried out. In order to send an RTR message, the CAN identifier must be binary or-ed
with 0x40000000 for can write. In order to send a 29 bit CAN identifier it must be or-ed with 0x80000000.

Channel Options

The following list describes the additional channel options of CAN channels.
-error

The last system error message on the channel. This is a read-only option.
-filter ?list?

Message filters applied on reception. 1ist must be made up of an even number of integers specifying CAN
identifiers and masks. The default is no filtering, expressed as two zero values. Up to 16 filters can be
specified. For details refer to /usr/include/linux/can.h.

-loopback ?bool?
Messages sent are looped back on the local system when enabled (on by default).
-ownmsgs ?bool?

Messages sent are received on the same channel when enabled (off by default).

Link Management
The link management subcommands bitrate, bittiming, bittiming const, berr, clock, ctlrmode, devstat, restart,
restart ms, start, state, and stop depend on an installed libsocketcan shared library for proper operation.
Otherwise they report "function not implemented". All changes of link state by these commands usually require
administrative rights. Either the calling process must have super user privileges or the CAP_NET_ADMIN capability
must be effective. The latter can be achieved by a command similar to:

setcap cap net admin+eip binary-package-requiring-tclcan
Furthermore, retrieving link information depends on CAN driver support. Usually, the virtual CAN driver vcan and
drivers attached through a serial line discipline (using the slcan_attach or slcand programs) only provide rudimentary
link state information.
Broadcast Manager Examples
Open BCM channel:

set chan [can bcmopen can0]

Schedule sending the pattern 0x41424344 on CAN identifier 0x123 once per second:

can write $chan TX SETUP \
{SETTIMER STARTTIMER} \
0 0.0 1.0 0x123 0x123 ABCD

Dispatch receiving CAN identifier 0x123 with update rate limited to two seconds:

can write $chan RX SETUP \
{SETTIMER RX FILTER ID RX ANNOUNCE RESUME} \

0 0.0 2.0 0x123
Dump all received BCM messages on standard output:

proc dump chan {puts [can dump $chan]}
fileevent $chan readable [list dump $chan]

ST

T

N _,/?' Test and debug strategies on AndroWish

Test and debug strategies on AndroWish

For interactive testing, follow the directions given in tkconclient.

When scripts are not run interactively but started using e.g. an icon on the Android home screen, script errors may
show up in the Android system log buffer when not reported through the Tcl background error mechanism. In this
case, the Android Debug Bridge (adb) should be used on a development system. Refer to the description of the logcat
command-line tool and see an example output in the last image of the AndroWish SDK documentation.

Similarly, when explicit log output shall be written by application code, the borg log ... command or the sdltk log
. command can be used.

Output to the stderr and stdout channels in non-interactive scripts is normally not shown, but can be easily
displayed, too, when the console window is made viewable using console show.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/logcat

A
. Y

0/ tkconclient

tkconclient

tkconclient is described in the Tcl Wiki as means for remote access to another Tcl interpreter using the tkcon console
in socket mode.

For an interactive AndroWish this can be achieved by adding these lines to ~/.wishrc (the Tcl script getting sourced
when an interactive wish or AndroWish is started)

package require tkconclient
tkconclient::start 12345

meaning that TCP port 12345 is accepting incoming connections from tkcon on all interfaces. If the Android device is
connected to the development system using an USB cable, it is possible to redirect port 12345 to that USB
connection:

on development system, instruct adb (Android Debug Bridge from SDK)
to forward TCP port 12345
adb forward tcp:12345 tcp:12345

Then tkcon can connect in socket mode to localhost:12345. Alternatively, the netcat tool nc can be used but no input
prompts are shown:

netcat on development system, either called "netcat" or "nc"
nc localhost 12345

Alternatively, the socat tool can be used similar to netcat:

socat on development system
socat TCP:localhost:12345 STDIO

Even ye good olde telnet should do:

telnet on development system
telnet localhost 12345

Similarly, the comm package from tcllib can be used in ~/.wishrc as

package require comm
comm: :comm new comm::comm -port 12347 -local 1 -listen 1 -silent 1

where the TCP port used is 12347 on the local interface. The adb redirection in this case is:
adb forward tcp:12347 tcp:12347
My own ~/.wishrc is somewhat larger:

Start socket for tkcon

#

When used over ADB USB debug connection

the TCP port 12345 must be forwarded using
#

adb forward tcp:12345 tcp:12345

catch {
package require tkconclient
tkconclient::start 12345

}

Start socket for comm

#

When used over ADB USB debug connection

the TCP port 12347 must be forwarded using
#

adb forward tcp:12347 tcp:12347

catch {
package require comm
comm::comm new comm::comm -port 12347 -local 1 -listen 1 -silent 1

}

Start dropbear SSH/SFTP daemon using librun.so
which is on the path of executable programs and
located in the directory where all AndroWish

shared libraries are installed.

http://wiki.tcl.tk/14701
http://wiki.tcl.tk/1878
http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/wiki?name=AndroWish

When used over ADB USB debug connection
the TCP port 12346 must be forwarded using

adb forward tcp:12346 tcp:12346

The public key of the development system
must have been copied to $env(HOME)/.ssh/authorized keys
of the Android device. $env(HOME) is usually /data/data/tk.tcl.wish/files

This allows to SSH into the device as the AndroWish user

or to SFTP to/from the device as the AndroWish user.

That poor AndroWish user is the uid under which the Android
package manager decided to install the AndroWish APK.

HHHFHFHRFEHRFEHRHHER

dropbearkey: librun.so libdropbear.so dropbearkey main ...
curl: librun.so libcurl.so curl_main ..

catch {
exec librun.so libdropbear.so dropbear main -R -p 12346
}
Other goodies accessible through librun.so
#
tclsh: librun.so libtcl.so tclsh ..
sqlite3: librun.so libtclsqlite3.so sqlite3 shell ..
ssh: librun.so libdropbear.so cli main ..
scp: librun.so libdropbear.so scp main ..
#
#

ST
T n

)
2/ topcua

opcua command

Name
opcua - Tcl binding to the OPC/UA implementation of http://www.open62541.org
Synopsis

package require topcua
opcua cmd ?arg?

Description

This command provides several operations to manage and communicate using the OPC/UA implementation of
http:/ /www.open62541.0rg. It is available on common POSIX and Windows platforms. cmd indicates which
operation to carry out. Any unique abbreviation for cmd is acceptable. The valid commands are:

opcua acl handle ?user pass ...?

Modifies the user/password based access control list of the server object handle. This command must be
called after the server object has been created (see opcua new server) and before it is put into operation
(see opcua start). To allow anonymous logins, specify an empty username in the arguments, whose
password will be ignored.

opcua add handle DataType nodeid parent reftype brname ?attrs?

Adds an new node of node class DataType in the object handle and returns the node identifer. The
parameter nodeid is the requested new node identifier of the node to be created. parent is the parent
node identifier and reftype the reference type or node identifier of the reference between the parent and
the new node. brname is the browse name (see section Qualified Names) of the new node. The optional
attrs parameter specifies attributes for the new node in form of a dictionary (see opcua attr default). If
it is omitted, default values are used. The DisplayName attribute if left empty is preset to the name part of
the browse name parameter.

opcua add handle Method|SimpleMethod nodeid parent reftype outargs brname inargs cmd ?attrs?

Adds an new node of node class Method in the object handle and returns the node identifer. In the
SimpleMethod command form the parameter outargs describes the output arguments of the method as a
list of zero or more pairs of data type and argument names. To force an argument to be a scalar, the
argument name must be prefixed with an exclamation mark. To force an argument to be an array, the
argument name must be prefixed with an asterisk. Likewise, inargs describes the input arguments of the
method with identical prefix rules. In the Method command form, both outargs and inargs must be
provided as lists of dicts with the template obtained from opcua types empty Argument. The parameter cmd
is the Tcl callback to handle the method invocation, see section Method Callbacks for more information.
For the other parameters, refer to opcua add DataType.

opcua add handle Namespace name

Adds the new namespace name to the server object handle and returns a numeric identifier for this
namespace.

opcua add handle Object nodeid parent reftype brname ?typeid attrs?

Adds an new node of node class Object in the object handle and returns the node identifer. The optional
parameter typeid must be a known data type name (see opcua types) or a node identifier of a data type.
For the other parameters, refer to opcua add DataType.

opcua add handle ObjectType nodeid parent reftype brname ?attrs?

Adds an new node of node class ObjectType in the object handle and returns the node identifer. For the
other parameters, refer to opcua add DataType.

opcua add handle Reference srcid reftype target ?forward?
Adds a reference of type reftype (see opcua reftype) between the node identifiers srcid and <target on
the object handle. The optional parameter forward must be a boolean indicating the direction of the
reference (true, the default, is forward, false is inverse).

opcua add handle ReferenceType nodeid parent reftype brname ?attrs?

Adds an new node of node class ReferenceType in the object handle and returns the node identifer. For
the other parameters, refer to opcua add DataType.

opcua add handle Variable nodeid parent reftype brname ?typeid attrs cmd?

Adds an new node of node class Variable in the object handle and returns the node identifer. The optional
parameter typeid must be a known data type name (see opcua types) or a node identifier of a data type
or an empty string for a default value. Parameter cmd is an optional data source callback which produces
(read operation) or consumes (write operation) the variable's value. See section Data Source Callbacks
for more information. For the other parameters, refer to opcua add DataType.

opcua add handle VariableType nodeid parent reftype brname ?typeid attrs?

Adds an new node of node class VariableType in the object handle and returns the node identifer. The
optional parameter typeid must be a known data type name (see opcua types) or a node identifier of a
data type or an empty string for a default value. For the other parameters, refer to opcua add DataType.

opcua add handle View nodeid parent reftype brname ?attrs?

Adds an new node of node class View in the object handle and returns the node identifer. For the other
parameters, refer to opcua add DataType.

opcua appdesc handle ?description?

Queries or sets the application description of the object handle. For a query, the current application
description is returned as a a dictionary. This dictionary can be used as basis for modification and further
to set a new application description. The set operation can be performed only on stopped server objects
and unconnected client objects. Note, that the ApplicationUri component of the application description
must match the corresponding information in certificates.

opcua attrs ?list|default|numeric? ?name?

Without further parameters returns a list of attribute names the opcua read and opcua write commands
support, e.g. Value, NodeClass, etc. With the 1ist keyword a list of the data types used as attributes for
creation of nodes with the opcua add command is returned. With the default keyword combined with the
name of the data type a dictionary describing the default attributes of this type is returned, e.g opcua
attrs default DataTypeAttributes yields a default dictionary for creation of a DataType node. With the
numeric keyword combined with the name of the data type, the numeric value of the attribute is returned.

opcua attr init name body ...

Helper function to create and return a dictionary for the attribute type name which is initially filled with
defaults from opcua attrs default... and finally modified by the Tcl code in body with the same rules as
in the dict with command. The parameters following body are assigned to the list args as in a proc. In
contrast to dict with, body is executed in a call frame of its own.

opcua browse handle nodeid ?dir reftype mask ...?

Performs a browse operation on the client or server object handle starting at the node nodeid. The browse
direction can be specified with the dir parameter as Forward, Inverse, or Both. Forward is the default
direction. The optional reftype parameter selects the types of references to be considered. References can
be preceeded with an exclamation mark in order to reverse their direction. A reference may be abbreviated
as slash for HierarchicalReferences or as dot for Aggregates. If reftype is not specified, all nodes
referenced to/from nodeid are reported. The optional mask and following parameters select specific node
classes Object, Variable, Method, ObjectType, VariableType, ReferenceType, DataType, and View. The
result of the browse operation is a list where each item is made up of the six elements node identifier,
browse name (qualified name), display name (locale and text), node class, reference node identifier, and
type node identifier.

opcua call handle nodeid methodid ?type value ...? ?-async cmd?

Calls the method with node identifier methodid on the object with node identifier nodeid on the client or
server object handle with parameters described by pairs of type (data type, e.g. Int32 or String) and
value (the parameter's value). The method's result is returned. The method is carried out on the server,
i.e. when directly used with a server handle there's no network traffic since the method is run locally. The
type parameters should be prefixed with an asterisk or an exclamation mark in order to achieve the same
semantic as in a method definition with opcua add SimpleMethod. Otherwise, array vs. scalar interpretion is
automatically performed, i.e. when the corresponding value is a list, it is used as an array. For client
objects, asynchronous operation is carried out when the last two parameters are -async and a (possibly
empty) callback command cmd. In case of a non-empty callback the command returns an integer request
identifier, which can be used to cancel the asynchronous operation. Otherwise the call is performed but the
result is ignored. See section Asynchronous Operations for more information.

opcua cancel handle reqid ...

Cancels one or more asynchronous requests on the client object handle. The requests to be cancelled are
identified by their integer identifiers reqid. The associated callbacks are evaluated with a timeout status
code.

opcua cert handle cert pkey ?trust ...?

Loads the certificate cert and private key pkey into the client or server object handle. Both must be byte
arrays. The optional parameters trust are zero or more byte arrays with certificates which are added to
the object's trust list. If the underlying open62541 library does not support encryption, this command fails
with an appropriate error message. If it succeeds, it forces a server object to only allow encrypted

sessions. Similarly, a client object tries to use a sign-and-encrypt endpoint of a server.
opcua children handle nodeid

Returns the child node identifiers of the given node identifier nodeid on the client or server object handle.
opcua connect handle url ?user password?

Connects the client object handle to the URL url using the optional credentials user and password.
opcua connect handle url -async

Connects the client object handle to the URL url. The operation is asynchronous, i.e. the connection
establishment takes place in background. It can be observed with the optional onclientstate callback of
the client object.

opcua const ?name ...?7

Without optional parameters returns a list of names for which mappings to numerical values are known. If
name is provided, the numerical value for the name is returned. When more than one name is given, a
bitwise OR of the values for the names is returned. name can be optionally prefixed with UA , i.e.
ACCESSLEVELMASK READ and UA ACCESSLEVELMASK READ are mapped to the same numerical value.

opcua createcert fmt subjects subjectaltnames ?bits?

Creates a self signed certificate and private key given format fmt (der or pem), a list of subjects, a list of
subjectaltnames, and optional bits. If bits is omitted a reasonable default is selected. The result is a two
element list made up of a byte array with the certificate and a byte array with the private key.

opcua datasources handle ?nodeid? ?cmd?

Returns or modifies information on data sources (Variable nodes with callbacks) for the server object
handle. Without optional parameters for each known data source two list elements with node identifier and
callback command are added to the result. With nodeid information for the specified node is returned. With
cmd the Tcl callback is changed. If cmd is given as an empty list, that callback is deleted and the variable
node will return to normal (non-datasource driven) behaviour.

opcua datetime ?seconds|...|utc ?value??

Returns either POSIX or OPC/UA timestamps as Tcl_WidelInt values. If called without further parameters
the current OPC/UA local DateTime is returned. If called with the single keyword utc the current OPC/UA
UtcTime is returned. Otherwise, value is required and converted from POSIX to OPC/UA UtcTime for the
keywords seconds, milliseconds, and microseconds, and from OPC/UA UtcTime to POSIX for the
keywords unixseconds, unixmillis, and unixmicros, respectively. For the keyword string the value given
is returned as an ISO 8601 formatted string with local time offset, for utcstring as an ISO 8601 formatted
string in UTC. For the keyword scan the value given is parsed as an ISO 8601 or RFC 3339 time string and
converted to an OPC/UA timestamp as Tcl_WidelInt value.

opcua decode ?handle? type bytes

Performs deserialization of the byte array bytes as data type type, which can be a type name or node
identifier. Optionally, handle is used for type lookup. By default, if the type is ExtensionObject, an
additional decoding step is performed to deserialize the content of that object. This can be turned off if the
type is prefixed with a caret.

opcua deftypes handle nsuri defs

Defines custom datatypes (structures with and without optional fields, unions, and simple enumerations) in
the server object handle and namespace URI nsuri. The namespace is created with the opcua add
Namespace command and must exist before the opcua deftypes command is called. The parameter defs
describes the structures and enumerations to be created. The command does all necessary steps to create
the required nodes in the server object's address space and to store an XML bytestring describing the
(de)serialization for the structures as extension objects. That XML is later to be reparsed with the opcua
gentypes command. For details refer to section Defining Custom Data Structures below.

opcua delete handle Node nodeid ?withrefs?

Deletes the node with identifier nodeid on the server object handle. If withrefs is true, the references of
the node are deleted, too.

opcua delete handle Reference srcid reftypeid targetid ?forward? ?bidir?

Deletes the reference described by srcid, reftypeid, and targetid on the server object handle. The
boolean flag forward selects forward or inverse direction of the reference to be deleted. The boolean flag
bidir requests a bidirectional reference to be deleted. The default is to delete in forward direction only.

opcua destroy handle

Destroys the client or server object handle and releases its resources, e.g. closes network connections,
tears down the handle specific namespace, etc.

opcua dict init name body ...

Helper function to create and return a dictionary for the data type name which first is primed with opcua
types empty... and finally modified by the Tcl code in body with the same rules as in the dict with
command. The parameters following body are assigned to the list args as in a proc. In contrast to dict
with, body is executed in a call frame of its own.

opcua disconnect handle ?-async?

Disconnects the client object handle. If the optional parameter -async is specified, the operation is carried
out in asynchronous mode.

opcua encode ?handle? type data

Performs serialization of data as data type type, which can be a type name or node identifier. Optionally,
handle is used for type lookup. By default, the resulting byte array is wrapped in an ExtensionObject.This
can be turned off if the type is prefixed with a caret.

opcua endpoints ?url?

Queries the local OPC/UA server opc.tcp://localhost:4840 or the server specified by the url parameter
for endpoints and returns a list of URLs describing the endpoints found.

opcua event handle create nodeid

Creates an event node on the server object handle. The node identifer nodeid must be an event object
type. The node identifier of the newly created event is returned. This can be used in opcua property
commands to add information to the event, and in further opcua event commands to trigger it, i.e. send it
out.

opcua event handle oneshot eventid originid

Sends the event node eventid on the server object handle with its origin set to node identifier originid.
The event node is automatically deleted after this operation.

opcua event handle trigger eventid originid
Similar to opcua event oneshot but the event node is kept and can be sent again later.
opcua fromjson ?handle? type json

This is an optional command which is available when the open62541 library is compiled with JSON support.
The JSON string json is converted to an equivalent Tcl serialization (dictionaries, lists) according to the
datatype type. The type is looked up globally and optionally in the type information available for the client
or server object handle. The serialized value is returned as result of the command.

opcua genstubs handle ?strip stubsts ...?

Generates stubs for methods in the handle specific address space derived from the client or server object
handle. The address space is traversed and browse paths and node class paths are accumulated. The
resulting browse paths optionally get the prefix strip stripped off from the beginning and optionally
filtered using the glob patterns following the strip parameter. If substs is not empty it specifies pairwise
regexps and substitutions which are applied on the browse paths for the final procedure names. For all
nodes matching the node class path pattern Object/Method the optional InputArguments and
OutputArguments child nodes are retrieved and stub procedures are written using the browse path and
argument information.

opcua gentypes handle ?uri xml ...?

Generates custom data type mappings using information obtained from analyzing the address space
derived from the client or server object handle. This feature is highly experimental and requires the tDOM
package for parsing XML. It can create encoders/decoders for simple structure data types defined in the
address space which perform a mapping from/to Tcl dictionaries. If the type information is to be provided
directly, the optional parameters uri and xml are pairs of URI identifying a namespace and XML formatted
type descriptions. The URIs are matched against the namespace array obtained from the address space of
handle. For further information, see the server_types.tcl and client_types.tcl scripts in the examples
directory. If this command is used, it should be invoked prior to creating method stubs, since methods
may require custom data types in their arguments.

opcua guidgen ?nsindex|seed number?

Generates a random GUID. If nsindex is specified, a node identifier in namespace nsindex with a random
GUID is produced. If the keyword seed is used, the random generator is primed with current time or the
optionally specified number.

opcua history handle delete nodeid start end

Deletes historic data given client handle, node identifier nodeid, and time range start and end, which must
be given as OPC/UA UtcTime timestamps.

opcua history handle insert|replace|update nodeid value

Inserts, replaces, or updates a OPC/UA DataValue value given client handle and node identifier nodeid. The
timestamps of the DataValue are used to select the place for the insert operation or the value to be
changed, respectively.

opcua history handle read nodeid start end ?numvals timestamps bounds range?

Reads historic data given client handle and node identifier nodeid. The parameters start and end give the
time range of interest as OPC/UA UtcTime timestamps. The numvals parameter limits the number of items
returned. With timestamps the timestamps to be returned in the result are specified. With the boolean
bounds the treatment of the upper and lower boundary of the selected set can be included or excluded.
The range parameter must be an empty string or a valid OPC/UA index range further filtering the result
set. The result is a list made up of the Tcl representation of OPC/UA DataValues.

opcua info ?handle?

Returns the object type of handle, either client or server. If handle is omitted, a list of all known client
and server object handles is returned.

opcua limits handle ?name?

Returns operation limits like MaxNodesPerRead or MaxNodesPerBrowse for the client or server handle.
If name is specified that limit is returned. For both a client and server handle this involves a read operation
of a variable's Value attribute below Root/Objects/Server/ServerCapabilities/OperationLimits when
the limit isn't known yet. The value read is then cached for later re-use. If name is omitted a list with all
limits suitable for array set is returned. In a client, limits whose values are still unknown are reported as
zero. In a server the cache is filled immediately.

opcua loader handle xml ?evar rvar tvar?

Imports a node set from an XML string xml into the server handle. The amount of imported information
highly depends on the build options of the underlying open62541 library. Node descriptions which can't be
supported are ignored and internally accumulated. For analysis, that information is made available by the
evar, rvar, and tvar result variables, which receive a list in array set form with each key being the node
identifier and each value a dictionary with node information (for evar) including an error description, and
reference information (for rvar), and typedef information (for tvar). A result is returned which is a list in
array set form with each key being the method's implementation proc name and each value a list of node
identifiers which will invoke the respective implementation.

opcua log ?command?

Retrieves or sets the callback command for open62541 log messages. When a log message is issued,
command is invoked with three parameters appended: the log level, e.g. info, warning, the category, e.g.
network, client, and the text of the log message.

opcua mapstruct handle ?nodeid destid members ...?

Adds variable nodes with an internal data source mapping to the members of the structure identified by
nodeid in the server handle. It allows clients to read the structure element wise even when there's no client
support for deserialization of the whole structure. Alternatively, if pairs of destid and members are
provided, no additional variable nodes are created but the mapping is established between the variable
identified by destid and the structure field members of structure nodeid. If nodeid and following parameters
are left out, the current mappings are returned as a list where each three elements are made up of
destination node identifier, structure node identifier, and structure member name. Warning: no logic is
built in to prevent from creating multiple mappings, when variable nodes are to be added. Thus, the user
should ensure in this case to call the mapstruct subcommand only once per nodeid. Since a node only
supports a single data source, an error is raised when a node already has a callback installed from the add
or datasources subcommand.

opcua mbrowse handle {nodeid ?dir reftype mask?}

Performs a multi browse operation on the client or server object handle similar to opcua browse, think of a
parallel version useful to reduce network latency. The nodes, browse directions and further constraints are
specified in separate lists. The result is a list for each input list of arguments made up of the six elements
described in opcua browse.

opcua methods handle ?nodeid outtype cmd

Returns information on methods for the server object handle. Without optional parameters, for each
known method three list elements with node identifier, result type information, and callback command are
added to the result. With nodeid information for the specified node is returned. With outtype which must
be a list of dicts of serialized Argument structs the method's mapping of result values is modified. With cmd,
the Tcl callback is changed. If cmd is given as an empty list, that callback is deleted and the method node
will report an error upon call from the OPC/UA side.

Bopcua monitor handle configure O monid ?cmd?

Configures the monitor monid on the server object handle with the provided parameters, see opcua
monitor new for further information.

opcua monitor handle configure subid monid ?cmd mode interval?

Configures the monitor monid in subscription subid on the client object handle with the provided
parameters, see opcua monitor new for further information.

opcua monitor handle destroy subid monid

Destroys the monitor monid in subscription subid on the object handle and releases all its resources. If
handle is a server object, subid must be specified as zero.

opcua monitor handle info subid ?monid?

Returns information on monitor monid in subscription subid on the handle. If handle is a server object,
subid must be specified as zero. The result is a list of monitor type (data or event) when handle refers to
a client object (otherwise the list element is left out), the node identifier, the callback command, the
attribute, the monitor's mode (only for client handles), and the interval. If monid is omitted, a list of all
monitor identifers registered in the subscription or in the server object is returned.

opcua monitor handle new 0 cmd nodeid ?attr interval?

Creates a monitored item of the data value for the node identifier nodeid on the server object handle. The
optional parameter attr selects the attribute of the node to be monitored (vValue is the default). The
monitoring interval <i<>interval must be given as number of milliseconds. The callback command
parameter cmd isdiscussed in section Monitor Callbacks below. The command returns a numeric identifier
of the newly created monitor.

opcua monitor handle new subid type cmd nodeid ?filter attr mode interval?

Creates a monitored item of type (data or event) for the node identifier nodeid in the subscription subid
on the client object handle. The parameter filter must be specified for event monitors as a list made up
of type identifiers, qualified names, and attributes, e.g. {BaseEventType Message Value ...}, where
BaseEventType must be given as node identifier by look up per opcua translate. For data monitors,
filter must be a list of data change trigger type, deadband type, and deadband value. If left empty,
reasonable defaults are selected. The optional parameter attr selects the attribute of the node to be
monitored (Value is the default for data monitors, EventNotifier for event monitors). The monitor mode
mode must be one of Disabled, Sampling, and Reporting. The monitoring interval interval must be given
as number of milliseconds, if omitted its value is derived from the subscription. The callback command
parameter cmd is discussed in section Monitor Callbacks below. The command returns a numeric identifier
of the newly created monitor.

opcua mread handle cmd nodeid ...

Similar to opcua read this command carries out a multi read operation of value attributes on nodeid and
following node identifiers. If cmd is given as empty string, the operation is synchronous and a list of value
attributes is returned. For asynchronous operation see opcua call and section Aynchronous
Operations.

opcua mreadx handle cmd nodeid attr index ...

Similar to opcua mread this command carries out a multi read operation of attribute attr with index on
nodeid and following parameters. Each single read is described by note identifier, attribute, and index. The
index parameter must be an empty string or a valid OPC/UA index range. If cmd is given as empty string,
the operation is synchronous and status codes and values for all attributes are returned as a list. For
asynchronous operation see opcua call and section Aynchronous Operations.

opcua mtranslate handle {nodeid reftype target ..}

Performs a multi translate operation on the client or server object handle similar to opcua translate, think
of a parallel version useful to reduce network latency. The nodes, reference types and targets are specified
in separate lists. The result is a list for each input list of arguments made up of the three elements
described in opcua translate.

opcua mwrite handle cmd nodeid type value ...

Similar to opcua write this command carries out a multi write operation of value attributes on nodeid and
following node identifiers. Each single write is described by node identifier, data type, and value. If cmd is
given as empty string, the operation is synchronous. For asynchronous operation see opcua call and
section Asynchronous Operations. In contrast to the opcua write command this operation transfers all
values with their source timestamp set to the current time.

opcua mwritex handle cmd nodeid attr index type value ...

Similar to opcua mwrite this command carries out a multi write operation of attribute attr with index on
nodeid given type and value. Each single write is described by note identifier, attribute, index, data type
and value. The index parameter must be an empty string or a valid OPC/UA index range. If cmd is given as
empty string, the operation is synchronous. The result is a list of status codes for each attribute given. For
asynchronous operation see opcua call and section Aynchronous Operations. In contrast to the opcua
write command this operation transfers all values with their source timestamp set to the current time.

opcua namespace handle ?uri?

Returns the namespace index for the namespace uri of the client or server object handle (or throws an

error e.g. when the namespace doesn't exist). If uri is omitted, a list of all known namespace indices and
corresponding URIs is returned.

opcua new ?client? ?name?
opcua new server port name

Creates a new client or server object and returns its handle. The port parameter must be present for
server objects and specifies the server's TCP port. The optional name is the object name (the handle). If no
parameters are given to opcua new a client object with an automatic name is created. During that process
the Tcl namespace : :opcua: :name is created which later is used to hold method stub procedures and other
information. That namespace is tied to the life time of the client or server object. The initial access control
list of a server object is empty.

opcua onclientstate handle ?cmd?

Returns or sets the callback for client connection state changes for the client object handle. The parameter
cmd is the Tcl callback to receive connection state information; it is invoked with three added parameters: 1.
the connection state as numeric OPC/UA status code, 2. the secure channel state as a string, and 3. the
session state as a string. Possible secure channel states are closed, hel sent, hel received, ack sent,
ack received, opn_sent, open, and closing. Possible session states are closed, create requested,
created, activate requested, activated, and closing.

opcua onfinalize handle ?typeid? ?cmd?

Returns or sets the callback for node finalization events on the server object handle. The parameter cmd is
the Tcl callback to handle the finalization event; it is invoked when a node in the server's address space is
deleted with one additional parameter which is the node identifier of the node being deleted. cmd must have
proper list format. If specified as an empty list, no callback on node finalization is carried out. If typeid is
specified it must be the node identifier of an ObjectType or a VariableType. In this case, the callback is
invoked when an Object or Variable node of this type is to be deleted. The callback gets two additional
parameters which are the node identifiers of the deleted node and its respective type. If both, typeid and
cmd parameters are omitted, a list of all finalizer callbacks is returned with the odd elements being the type
node identifiers (empty element for global finalizer) and the even elements the respective callback
commands.

opcua oninitialize handle ?cmd?

Returns or sets the callback for node initialization events on the server object handle. The parameter cmd is
the Tcl callbback to handle the initialization event; it is invoked when a new node is added in the server's
address space with two additional parameter which are the node identifier of the new node and its node
class. Cmd must have proper list format. If specified as an empty list, no callback on node initialization is
carried out. If typeid is specified it must be the node identifier of an ObjectType or a VariableType. In this
case, the callback is invoked when an Object or Variable node of this type is created. The callback gets
two additional parameters which are the node identifiers of the new node and its respective type. If both,
typeid and cmd parameters are omitted, a list of all initializer callbacks is returned with the odd elements
being the type node identifiers (empty element for global initializer) and the even elements the respective
callback commands.

opcua parent handle nodeid
Returns the parent node identifier of the given node identifier nodeid on the client or server object handle.
opcua permissions handle user namespaceindex ?permission ...?

Queries or modifies the user/namespace specific permissions for the server object handle. user specifies
the user name from the access control list (see opcua acl) or an empty string for anonymous logins.
namespaceindex is the namespace of interest in the range 0 to 31 or for changing permissions all to deal
with all 32 namespaces at once. Namespace numbers out of range are treated like namespace zero. If no
further arguments are provided, the list of permissions for that user and namespaceindex is returned. Each
granted permission is indicated with a leading plus character, each revoked permission with a leading minus
character, e.g. +ACCESSLEVELMASK READ and -ACCESSLEVELMASK WRITE. If at least one permission argument
is specified, the same logic as for a query is used, i.e. a leading plus (minus) character grants (revokes) the
respective following permission. Valid permissions are ACCESSLEVELMASK READ, ACCESSLEVELMASK WRITE,
ACCESSLEVELMASK HISTORYREAD, ACCESSLEVELMASK HISTORYWRITE, ACCESSLEVELMASK SEMANTICCHANGE,
ACCESSLEVELMASK STATUSWRITE, ACCESSLEVELMASK TIMESTAMPWRITE, EXECUTABLE, EXECUTABLE ON OBJECT,
WRITEMASK ACCESSLEVEL, WRITEMASK ARRAYDIMENSIONS, WRITEMASK BROWSENAME,

WRITEMASK CONTAINSNOLOOPS, WRITEMASK DATATYPE, WRITEMASK DESCRIPTION, WRITEMASK DISPLAYNAME,
WRITEMASK EVENTNOTIFIER, WRITEMASK EXECUTABLE, WRITEMASK HISTORIZING, WRITEMASK INVERSENAME,
WRITEMASK ISABSTRACT, WRITEMASK MINIMUMSAMPLINGINTERVAL, WRITEMASK NODECLASS, WRITEMASK NODEID,
WRITEMASK SYMMETRIC, WRITEMASK USERACCESSLEVEL, WRITEMASK USEREXECUTABLE,

WRITEMASK USERWRITEMASK, WRITEMASK VALUERANK, WRITEMASK WRITEMASK,

WRITEMASK VALUEFORVARIABLETYPE, WRITEMASK USERACCESSLEVEL, ADD NODE, ADD REFERENCE, DELETE NODE,
DELETE_REFERENCE, BROWSE_NODE, HISTORY UPDATE_DATA, HISTORY DELETE RAW DATA. The permission string
may be optionally prefixed with UA_in order to provide names as in the open62541.h header file. The special
permission names ACCESSLEVELMASK ALL and WRITEMASK ALL are not reported in a query but can be used
as a shortcut to turn all respective permissions on or off.

opcua pread

See section Prepared Read And Write Operations.
opcua property handle read nodeid name

Reads the property name from node identifier nodeid on the server object handle.
opcua property handle write nodeid name type value

Writes value of data type type to the property name of the node identifier nodeid on the server object
handle.

opcua ptree handle ?nodeid? ?mask?

Returns information similar to opcua tree using the client or server object handle. The address space is
traversed starting at the node identifier nodeid (the root node if omitted). The result list is made up of
browse path name, node identifier, node class path, reference node identier, type node identifier, and
parent node identifier. With mask the node kinds to be considered can be specified, if omitted all nodes are
reported. The browse path name is a path name like notation made up of the browse names pointing to
the final node as seen from the starting node. Browse names are written as qualified names, i.e. including
the numeric namespace index if not in root namespace. Similarly, the node class path is a path name like
notation made up of the node classes of all nodes along the path. The opcua ptree command is used
internally by the opcua genstubs command in order to filter out objects and methods when creating stub
Tcl commands to invoke methods on objects.

opcua pubsub handle AddConnection config

Adds a new PubSubConnection with the parameters from config, which must be a dictionary of type
PubSubConnectionDataType. The operation is carried out on the server given the client or server object
handle. The node identifier of the new PubSubConnection is returned.

opcua pubsub handle AddDataSetFolder name

Adds a new DataSetFolder object with name name in the server given the client or server object handle.
The operation is carried out on the server given the client or server object handle. The node identifier of
the new DataSetFolder is returned.

opcua pubsub handle AddDataSetReader groupId readerData

Adds a new DataSetReader object with information from readerData which must be a dictionary of type
DataSetReaderDataType on the ReaderGroup with node identifier groupId. The operation is carried out on
the server given the client or server object handle. The node identifier of the new DataSetReader is
returned.

opcua pubsub handle AddDataSetWriter groupId writerData

Adds a new DataSetWriter object with information from writerData which must be a dictionary of type
DataSetWriterDataType on the WriterGroup with node identifier groupId. The operation is carried out on
the server given the client or server object handle. The node identifier of the new DataSetWriter is
returned.

opcua pubsub handle AddPublishedDataltems name aliases flags vars

Adds a new PublishedDataSet with name name and the information contained in the three parameters
aliases (list of String type), flags (list of UInt16 type), and vars (list of PublishedVariableDataType).
The three lists must have the same number of elements. The operation is carried out on the server given
the client or server object handle. The node identifier of the new PublishedDataSet is returned.

opcua pubsub handle AddReaderGroup connId readerGroupData

Adds a new ReaderGroup object with information from readerGroupData which must be a dictionary of type
ReaderGroupDataType on the PubSubConnection with node identifier connId. The operation is carried out on
the server given the client or server object handle. The node identifier of the new ReaderGroup is returned.

opcua pubsub handle AddWriterGroup connId writerGroupData

Adds a new WriterGroup object with information from writerGroupData which must be a dictionary of type
WriterGroupDataType on the PubSubConnection with node identifier connId. The operation is carried out on
the server given the client or server object handle. The node identifier of the new WriterGroup is returned.

opcua pubsub handle DeletePubSubConfiguration

Removes all currently configured PubSub components (PubSubConnections, ReaderGroups, WriterGroups,
PublishedDataSets, DataSetReaders, and DataSetWriters) in the server given the client or server object
handle.

opcua pubsub handle LoadPubSubConfigurationFile bytes

This subcommand is identical to opcua pubsubcfg load but can be invoked from a client object handle,
too.

opcua pubsub handle RemoveConnection connId

Removes the PubSubConnection with node identifier connId. The operation is carried out on the server
given the client or server object handle.

opcua pubsub handle RemoveDataSetFolder folderId

Removes the DataSetFolder object with node identifier folderId and all contained PublishedDataSets. The
operation is carried out on the server given the client or server object handle.

opcua pubsub handle RemoveDataSetReader groupId readerId

Removes the DataSetReader with node identifier readerId on the ReaderGroup with node identifier groupId.
The operation is carried out on the server given the client or server object handle.

opcua pubsub handle RemoveDataSetWriter groupId writerId

Removes the DataSetWriter with node identifier writerId on the WriterGroup with node identifier groupId.
The operation is carried out on the server given the client or server object handle.

opcua pubsub handle RemoveGroup connId groupId

Removes the ReaderGroup or WriterGroup with node identifier groupId on the PubSubConnection with node
identifier connId. The operation is carried out on the server given the client or server object handle.

opcua pubsub handle RemovePublishedDataSet pdsId

Removes the PublishedDataSet object with node identifier pdsId. The operation is carried out on the
server given the client or server object handle.

opcua pubsubcfg handle load|save ?bytes?

Performs a serialization (save) or deserialization (load) of the PubSub configuration of the server object
handle. For the load operation, bytes must contain a byte array of the serialization, for save a serialization
is returned as result. The deserialization operation reconstructs the PubSub components in the server
described by bytes.

opcua pwrite ...
See section Prepared Read And Write Operations.
opcua read handle nodeid ?attr cmd?

Performs a read operation on the client or server object handle and returns the value of attribute attr of
the node identifier nodeid. If attr is omitted, it defaults to the Value attribute. The optional parameter cmd
can be specified on client objects in order to carry out the read operation in asynchronous mode. See
opcua call and section Asynchronous Operations for more information. If cmd is an empty list, on both
client and server, the return value of the read operation is not the deserialized value, but a DataValue
dictionary with additional information. The dictionary has the keys value for the value itself, valueRank with
optional arrayDimensions, dataType with the node identifier of the type of the value, and optional
timestamps. This mode of operation can be useful to find out if a Variable is a scalar or an array, or to
learn the real type of a value when the related Variable is of an abstract type.

opcua readjson handle nodeid ?attr?

This is an optional command which is available when the open62541 library is compiled with JSON support.
Similar to opcua read a read operation on the client or server object handle is performed and the value of
attribute attr of the node identifier nodeid is returned as a JSON string. If attr is omitted, it defaults to
the Value attribute. This operation is always synchronous.

opcua reconnect handle ?user password?

Reconnects the client object handle with the same parameters which were used upon the most recent
opcua connect call. Prior settings of user/password are overwritten with the arguments user and password,
if provided.

opcua reftype ?name?

Returns the node identifier for the reference type name. When name is omitted, a list of all reference type
names is returned.

opcua register handle nodelist

Registers the node identifiers from nodelist in the server to which handle is connected. If the operation
succeeds, another list of node identifiers is returned which provides aliases to the node identifiers passed
to the command during the life time of the session. Using the aliases instead of the original node identifiers
can improve performance of subsequent read and write operations.

opcua request handle ?reqid?

Returns information on pending asynchronous operations of the client object handle. If a numeric request
identifier reqid is given, a two element list for this request is returned made up of the operation type
(call, read, or write) and the callback command which receives the response. If reqid is omitted, a list of

all known pending request identifiers is returned.
opcua root

Returns the node identifier of the root node.
opcua run handle ?ms?

Runs asynchronous operations (subscriptions, monitored items) on the client object handle for ms
milliseconds. If ms is omitted, that duration defaults to zero. Normally, this operation is carried out by the
Tcl event loop. Still, this command can be used to test if the client object is in the connected state.

opcua sc2str ?-short? code

Translates the numeric status code code to an error message string. A single word error string such as
BadTimeout is produced when the -short option is specified.

opcua servers ?url?

Queries the local OPC/UA server opc.tcp://localhost:4840 or the server specified by the url parameter
for server information and returns a list made up of deserialized dictionaries based on the
UA ServerOnNetwork structure. Consult the open62541 documention for more information.

opcua session handle admin|current|isadmin|list

Queries session information from handle which must be a server handle. With parameter current the
current session identifier during a method or data source callback or during a constructor or destructor is
returned. In all other contexts, the result is an empty string. Similarly, the isadmin parameter reports 1 if
the current session is the adminstrative (server internal) session, or 0 in all other cases. With parameter
list a list of all known session identifiers is returned. With parameter admin the identifier of the
adminstrative (server interal) session is returned.

opcua start handle

Starts the server object handle. See section Server Object And Event Loop below for further
information.

opcua state handle

Reports the current state of handle. If handle refers to a client, the result is a three element list with the
identical information as passed in the additional parameters to the onclientstate callback. Otherwise, the
result is a two element list. The first element is either stopped or running indicating the server state. The
second element is a dictionary with statistic counters for connections, secure channels, and sessions.

opcua stop handle
Stops the server object handle.
opcua subscription handle configure id ?interval lifetime keepalive max prio?

Configures the subscription id on the client object handle. See opcua subscription new for the optional
parameters.

opcua subscription handle destroy id
Destroys the subscription id on the client object handle.
opcua subscription handle info ?id?

Returns information about subscription id on the client object handle as a list of enable flag, interval,
lifetime, keepalive, and maximum counters, and the priority value. If id is omitted, a list of all subscription
identifiers of the client object is returned.

opcua subscription handle new ?flag interval lifetime keepalive max prio?

Creates a new subscription (a container for monitored items, see opcua monitor) on the client object
handle and returns a numeric identifier of it. The following optional parameters control properties of the
subscription: flag is the initial enable state (on by default), interval, lifetime, keepalive, and max the
timing and queuing parameters, and prio the subscription's priority.

opcua subscription handle off id

Disables the subscription id on the client object handle.
opcua subscription handle on id

Enables the subscription id on the client object handle.
opcua tojson ?handle? type data

This is an optional command which is available when the open62541 library is compiled with JSON support.
The serialized (dictionaries, lists) Tcl value data is converted to an equivalent JSON string according to the

datatype type. The type is looked up globally and optionally in the type information available for the client
or server object handle. The JSON string is returned as result of the command.

opcua translate handle nodeid reftype target ...

Performs a translate operation on the client or server object handle. The operation starts at node identifier
nodeid and traverses the object tree along the references reftype and browse name target. A list made
up of the node identifier, namespace URI, and server index of the final target is returned as the result.
References can be preceeded with an exclamation mark in order to reverse their direction. A reference may
be abbreviated as slash for HierarchicalReferences or as dot for Aggregates.

opcua tree handle ?nodeid? ?mask?

Returns information similar to opcua browse using the client or server object handle. The address space is
traversed starting at the node identifier nodeid (the root node if omitted). The kind of nodes to be included
can be specified with mask. If mask is empty or omitted, all matching nodes are reported. The result list is
made up of tree level (0-based), node identifier, browse name (qualified name), display name (locale and
text), node class, reference node identifier, type node identifier, and parent node identifier.

opcua type handle nodeid ?attr?

Performs a read operation on the client or server object handle like opcua read but instead of the
attribute's value returns the type name of attribute attr of the node identifier nodeid. If attr is omitted, it
defaults to the vValue attribute.

opcua types basic|builtin|empty|info|list|map|name|nodeid ?handle name?

Returns a list of OPC/UA type names for the basic and list subcommands. Basic types are primitives (e.g.
integer numbers) for which a mapping to Tcl objects is provided. The map subcommand returns a list of
alternating node identifiers and type names suitable for array set. The empty subcommand requires name
to be a known OPC/UA type name and produces and returns an empty value of this type, e.g. 0.0 for a
floating point type. The nodeid subcommand returns the node identifier for the type name. The name
subcommand is the reverse operation of the nodeid subcommand and reports the type name for node
identifier in nodeid. The info subcommand returns detailed type information for the requested name or
nodeid. For the command forms where a handle can be specified, this allows to deal with additional custom
data types (see e.g. opcua deftypes) which where loaded into the client or server object handle. The
builtin subcommand returns the numeric value of the data type name for primitive types of namespace
zero.

opcua unregister handle nodelist

Unregisters the node identifiers from nodelist in the server to which handle is connected. This is the
reverse of the register subcommand which removes the aliases to the node identifiers in nodelist.

opcua users handle

Returns the usernames of the currently set user/password based access control list of the server object
handle. If anonymous logins are allowed, this is indicated by a username which is an empty string.

opcua version
Returns the major and minor version numbers of the integrated open62541 library, e.g. "1.0".
opcua write handle nodeid ?attr? type value ?cmd?

Performs a write operation on the client or server object handle writing value with type type into the
attribute attr of the node identifier nodeid. If attr is omitted, it defaults to Value. The operation is
performed without setting an explicit source timestamp. The optional parameter cmd can be specified on
client objects in order to carry out the write operation in asynchronous mode. See opcua call and section
Asynchronous Operations for more information. When the type argument is prefixed with an asterisk,
the ValueRank of the write operation is performed as a write to an array of one or more dimensions, i.e.
the value is interpreted as a list of values to be written. Likewise, when the type argument is prefixed with
an exclamation mark, the value argument is treated as a scalar. For dealing with multidimensional variables
(the attribute ValueRank indicating arrays of one or more dimensions, and the ArrayDimensions even
explicitely stating the bounds) the special prefix for the type must be the array dimensions separated by
commas and overall enclosed in parenthesis, e.g. "(3,3)i=6" or "(3,3)Int32" for an Int32 3x3 matrix.
Warning: this command performs additional queries of the address space in synchronous mode (cmd
argument omitted), if no prefix to the type indicating its interpretation is provided. This can cost up to two
additional round-trips to the server in client mode.

opcua writejson handle nodeid ?attr? type value

This is an optional command which is available when the open62541 library is compiled with JSON support.
Similar to opcua write a write operation on the client or server object handle is performed and the
attribute attr of the node identifier nodeid is written by serializing the JSON string value according to the
data type type. If attr is omitted, it defaults to Value. This operation is always synchronous.

opcua xcall handle nodeid methodid ?type value ...?

This is the coroutine aware version of opcua call. If called with a client handle in a coroutine context it

uses an asynchronous call operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

opcua xgenstubs handle ?strip substs ...?

This is the coroutine aware version of opcua genstubs. Instead of procedure bodies using opcua call it
writes coroutine aware procedure bodies using opcua xcall.

opcua xmldump handle

Returns an XML string of the address space of the client or server object handle. This includes only
namespaces with numeric index 2 and higher. If there are only namespace indices 0 and 1, i.e. in a fresh
server without additional node sets loaded, an error is reported.

opcua xmread handle nodeid ...

This is the coroutine aware version of opcua mread. If called with a client handle in a coroutine context it
uses an asynchronous read operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

opcua xmreadx handle nodeid attr index ...

This is the coroutine aware version of opcua mreadx. If called with a client handle in a coroutine context it
uses an asynchronous read operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

opcua xmwrite handle nodeid type value ...

This is the coroutine aware version of opcua mwrite. If called with a client handle in a coroutine context it
uses an asynchronous write operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

opcua xmwritex handle nodeid attr index type value ...

This is the coroutine aware version of opcua mwritex. If called with a client handle in a coroutine context it
uses an asynchronous write operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

opcua xread handle nodeid ?attr?

This is the coroutine aware version of opcua read. If called with a client handle in a coroutine context it
uses an asynchronous read operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

opcua xsleep ms

This is a coroutine aware convenience function which delays execution for ms milliseconds by using the
after command with a callback in order to service events, if invoked in a coroutine context.

opcua xwrite handle nodeid ?attr? type value

This is the coroutine aware version of opcua write. If called with a client handle in a coroutine context it
uses an asynchronous write operation with yield as callback, i.e. automatically suspends the coroutine and
resumes it again when the result becomes available.

OPC/UA Ensemble

The current implementation uses an ensemble and namespace opcua, i.e. the command opcua info can be
alternatively written as opcua: :info. Some more complex subcommands of the opcua namespace are implemented in
Tcl, namely the opcua tree and opcua genstubs procedures.

Node Identifiers

Numeric node identifiers can be written as ns=N;i=I where N is the numeric namespace, and I the numeric identifier.
Likewise, string node identifiers are written as ns=N;s=S with S being the string identifier. GUID node identifiers are
written as ns=N; g=G where the GUID is G with the usual format as sequence of hexadecimal numbers and dashes. The
namespace part can be left out when namespace zero is addressed. Currently, byte string node identifiers are not
supported. If the format cannot be determined (e.g. since the equal sign is missing) the fallback chosen is string node
identifier in namespace zero. String named namespaces are not supported.

Qualified Names

Qualified names are used for example in the opcua browse and opcua translate operations as so called browse
names. These are made up of an optional numeric namespace prefix (a number followed by a colon) and a name, e.g.
2:MyObject. The namespace prefix is left out if the name refers to namespace zero.

Localized Text

The data type LocalizedText is represented as a dict with the keys locale and text. When converting a Tcl value to a

LocalizedText item, these keys are tried to be associated. If this operation fails, the Tcl value is used as the text part
of the LocalizedText item and the locale part is left empty.

Supported Data Types

Currently, most of the data types of hamespace zero are supported and can be mapped to/from Tcl, i.e. integral and
floating point numbers, strings, GUIDs, and interal extension objects (similar to structures). For the latter, dictionaries
are used in both directions, i.e. for encoding, a dictionary is searched for the respective member names, for decoding,
a dictionary is created from the internal representation using the member names of the data type, see opcua attrs
default for example. Support for custom data types is highly experimental and underdocumented (see opcua

gentypes).
Monitor Callbacks

Monitor callbacks are invoked when a monitored item (data or event) is received. The callback parameter given in opcua
monitor new must have proper list format and gets a single value (data) or a list of values (event) appended prior to
invocation.

Data Source Callbacks

Data source callbacks are invoked when a DataValue is read or written to. The callback parameter given in the node
creation (opcua add Variable) must have proper list format and gets the following parameters appended prior to
invocation: the node identifier of the DataValue, the operation (either read or write), and the value attribute for write
operations. If the read or write operation specifies a numeric range, the range description is added as the last
parameter. It is expressed as a Tdl list with even number of integer elements. Each pair describes the start and end
elements of a dimension. For read operations the callback must return a two element list of the data type (e.g. String
or Int32) and the value itself. If the callback returns the TCL_BREAK return code, the value is assumed to be an
array and splitted into list elements which then are converted to OPC/UA data in an OPC/UA array.

Method Callbacks

Method callbacks are invoked when a Method node is called. The callback parameter given in the node creation (opcua
add Method) must have proper list format and gets the following parameters appended prior to invocation: the object
node identifier, the method node identifier, and a list of type names derived from the method's output arguments.
This list may be used in the method's implementation to form the result. The callback must return a single value which
must be a list with the same number of items of the output argument's type list. Each item gets converted to the
respective OPC/UA data value according to the output argument information of the Method node. I.e. for simple types,
a list item may be a single integer e.g. for a single UInt16, a list of integers for an array of UIntl16's, a single dict for a
structure type, or a list of dicts for an array of structured types. If the method invocation has to report back an error
as non-zero OPC/UA status code, the method must use return -code break, which triggers collection of the status
code from the global errorCode Tcl list.

Client Object And Event Loop

A client object obtained with opcua new client requires a running event loop only when subscriptions/monitored
items are involved. Most other operations are performed synchronously (and thus blocking).

Asynchronous Operations

Asynchronous mode of operation is supported for client objects and their opcua call, opcua read, and opcua write
subcommands. The callback parameter must have proper list format and gets a single value appended prior to
invocation which carries the deserialized response message corresponding to the operation. It is made up as a nested
dict which contains a ResponseHeader with the status code of the operation and depending on the operation the
method call result(s) or the value of the attribute read plus additional diagnostic information. That dict gets an extra
key named RequestId appended which is the integer request identifier of the operation which was returned by the
command initiating the request. If the callback parameter is specified as empty list, the response is discarded, i.e. no
Tcl code is evaluated and the operation appears as a one way request.

Prepared Read And Write Operations

Prepared read and write operations are modeled similar to prepared statements in databases. The operation is setup
in a single preparation phase, where the node identifiers and data types (for the write direction) are specified and tied
to local names. Afterpreparation the operation can be executed multiple times without the need to parse node
identifiers/data types again. After execution the results can be retrieved, i.e. the data read for read operations or the
write status information for write operations.

opcua pread configure phandle name ?value?

Returns the configuration of the item name in phandle as dictionary of a serialized ReadValueld, if no
value argument was provided. Otherwise changes the configuration of name according to value which must
be a dictionary of a serialized ReadValueld.

opcua pread delete phandle

Deletes the prepared read identified by <i<>phandle. This step is implicitly carried out when the OPC/UA
client or server handle to which phandle is bound is deleted.

opcua pread execute phandle

Performs the OPC/UA read operation described by phandle and returns an empty string as result. In error
cases an exception with the overall error result of the OPC/UA response is returned.

opcua pread get phandle name

Returns the last read value for item name of phandle.
opcua pread getall phandle

Returns a dictionary made up of the last read values of all items in phandle.
opcua pread getx phandle ?name?

Returns the last read value for item name of phandle with all available meta data in the form of a serialized
DataValue as dictionary. If name is omitted, a dictionary of all items in handle is returned with a serialized
DataValue for each item.

opcua pread info handle|phandle

Returns a list of the prepared reads of the client or server handle handle, or the item names of handle
phandle.

opcua pread new handle nodeid name ...

Creates a new prepared read on the client or server identified by handle and returns a handle (phandle) for
the prepared read. One or more items identified by name which will read the respective nodeid must be
specified for the prepared read.

opcua pread status phandle ?name?

Returns the last status code for item name on phandle. If name is omitted a dictionary keyed by item names
of all status codes of phandle is returned.

opcua pwrite configure phandle name ?value?

Returns the configuration of the item name in phandle as dictionary of a serialized WriteValue, if no value
argument was provided. Otherwise changes the configuration of name according to value which must be a
dictionary of a serialized WriteValue.

opcua pwrite delete phandle

Deletes the prepared write identified by <i<>phandle. This step is implicitly carried out when the OPC/UA
client or server handle to which phandle is bound is deleted.

opcua pwrite execute phandle

Performs the OPC/UA write operation described by phandle and returns an empty string as result. In error
cases an exception with the overall error result of the OPC/UA response is returned.

opcua pwrite info handle|phandle

Returns a list of the prepared writes of the client or server handle handle, or the item names of handle
phandle.

opcua pwrite new handle nodeid type name ...

Creates a new prepared write on the client or server identified by handle and returns a handle (phandle)
for the prepared write. One or more items identified by name which will write the respective nodeid with data
type type must be specified for the prepared write. The data type can be left as an empty string in which
case it must later be provided at least once in a opcua pwrite set call.

opcua pwrite set phandle name ?type? value

Sets the value for item name in the prepared write phandle. If no data type type is specified, the data type
of value is the last data type used for the item, e.g. the initial type provided in opcua pwrite new.

opcua pwrite setall phandle value
Sets the values for all items in phandle from the dictionary value.
opcua pwrite status phandle ?name?

Returns the last status code for item name on phandle. If name is omitted a dictionary keyed by item names
of all status codes of phandle is returned.

Client Example

package require topcua

create client
opcua new client C

connect to server
opcua connect C opc.tcp://localhost:4840 user pass

get MyNamespace
set ns [opcua namespace C MyNamespace]

generate stub procs to methods in server
these are created in the client specific ::opcua::C namespace
opcua genstubs C /Root/0Objects/${ns}:MyObject/${ns}:

list all procs in client specific namespace
puts stderr [info procs ::opcua::C::*]

call stubs
puts stderr [::opcua::C::Reverse esreveR]
puts stderr [::opcua::C::WordSplit "word\n\nsplit"]

read a variable
puts stderr [opcua read C "ns=${ns};ItsTclTime"]

monitor callback proc
proc monitor {data} {

puts stderr "Monitor: $data"
}

make a subscription
set sub [opcua subscription C new 1 1000.0]

make a monitor

set mon [opcua monitor C new $sub data monitor "ns=${ns};ItsTclTime"]
puts stderr "Subscription: $sub"

puts stderr "Monitor: $mon"

handle monitors for a few seconds
set done 0

after 10000 {set done 1}

vwait done

delete monitor and subscription
opcua monitor C destroy $sub $mon
opcua subscription C destroy $sub

shut down the server using a method call
r:opcua::C::Exit

destroy the client
opcua destroy C

Server Object And Event Loop

A server object obtained with opcua new server requires a running event loop as long as it is in running state (started
with opcua start). Depending on the support of the underlying open62541 library, the opcua server's network
handler re-dispatches itself using a Tcl timer callback whose interval is controlled by the protocol timers of the OPC/UA
stack implementation, or it spins up a dedicated thread which deals with the network traffic. In the latter case, a
running event loop is required, too, for processing method and datasource callbacks.

Server Example

package require topcua

create server
opcua new server 4840 S

setup access control
opcua acl S user pass

implementations of methods etc.
namespace eval ::opcua::S {
method callback
proc reverse {obj meth string} {
return [string reverse $string]
}

method callback

proc wordsplit {obj meth string} {
set w [regexp -all -inline {\S+} $string]
return code break makes into an array result
return -code break $w

method callback
proc exit {obj meth} {
after 1000 [namespace current]:: real exit
return {}
}
helper proc
proc real exit {} {
catch {
::opcua::stop S
::opcua::destroy S
}
exit 0
b
data source callback
proc its tcl time {node op {value {}}} {
if {$op eq "read"} {
return [list String [clock format [clock seconds]]]

return {}

}

create our OPC/UA namespace
set ns [opcua add S Namespace MyNamespace]

get Objects folder
set OF [lindex [opcua translate S [opcua root] / Objects] 0]

create an object in our namespace in Objects folder
set obj [opcua add S Object "ns=$ns;s=My0Object" $0F Organizes \
"$ns:MyObject"]

create methods on object
set meth [opcua add S Method "ns=$ns;s=Reverse" \
$obj HasComponent \
{String !out} "$ns:Reverse" {String !in} \
1:opcua::S:: reverse]
set meth [opcua add S Method "ns=$ns;s=WordSplit" \
$obj HasComponent \
{String !out} "$ns:WordSplit" {String !in} \
1:opcua::S:: wordsplit]
set meth [opcua add S Method "ns=$ns;s=Exit" \
$obj HasComponent \
{} "$ns:Exit" {} \
riopcua::S:: exit]

create a variable in our namespace in Objects folder
set var [opcua add S Variable "ns=$ns;s=ItsTclTime" \
$0F Organizes \
"$ns:ItsTclTime" {} {} \
ttopcua::S:: its tcl time]

dump methods
puts stderr [opcua methods S]

generate stubs to methods in server
these are created in the server specific ::opcua::S namespace
opcua genstubs S /Root/0Objects/${ns}:MyObject/${ns}:

list all procs in server specific namespace
puts stderr [info procs ::opcua::S::*]

call stubs directly on server
puts stderr [::opcua::S::Reverse esreveR]
puts stderr [::opcua::S::WordSplit "word\n\nsplit"]

read our variable
puts stderr [opcua read S $var]

start server
opcua start S

enter event loop
vwait forever

Defining Custom Data Structures

package require topcua

create server
opcua new server 4840 S

create our namespace

set NS http://www.androwish.org/TestNS/
set nsidx [opcua add S Namespace $NS]

create structs etc., field names prefixed with '*' are arrays
CAUTION: no comments allowed in the definition list
opcua deftypes S $NS {
typedef WORD UIntl6
struct KVPair {
String name
String value

}

struct RGB {
WORD red
WORD green
WORD blue

struct NamedColor {
String name
RGB color

}

struct WithArray {
String name
String *values

enum SimpleEnum { Red Green Blue }
union Various {

KVPair pair

RGB color

NamedColor ncolor

}

optstruct OptColor {
mandatory String name
optional RGB color

}

import type defs
opcua gentypes S

make some variables using the structs from above
set OF [lindex [opcua translate S [opcua root] / Objects] 0]
foreach {name type} {
X1 KVPair
X2 RGB
X3 NamedColor
X4 WithArray
Ao
set att [opcua attrs default VariableAttributes]
dict set att dataType [opcua types nodeid S $typel
dict set att value [list $type [opcua types empty S $typell
opcua add S Variable "ns=${nsidx};s=$name" $0F Organizes \
"${nsidx}:$name" {} $att
}

opcua write S "${nsidx}:X4" Value WithArray {
name {A B C D E}
values {A B C D E}

}

start server
opcua start S

enter event loop
vwait forever

ST
T n

M topcua::filesystem

opcua::filesystem

Name

opcua::filesystem - OPC/UA filesystem for topcua
Synopsis

package require topcua::filesystem
opcua::filesystem handle foldername rootdir
opcua::fsdestroy handle

opcua::fsrescan handle

Description

These commands provide several operations to manage FileType and FileDirectoryType objects in an opcua based
OPC/UA server. The parameter handle in all commands must refer to a server handle. Foldername is the browse and

display name for the toplevel node (the root) of the OPC/UA file system and is located in the /Root/Objects folder.

Rootdir is the native root directory to be mapped.

The opcua::filesystem command performs the mount operation and creates the required OPC/UA nodes to map to
native files and directories below rootdir.

The opcua:: fsdestroy command performs the unmount operation and destroys all related OPC/UA nodes and closes
open files.

The opcua:: fsrescan command synchronizes the OPC/UA address space below the node corresponding to foldername
to the contents of the native rootdir.

Up to 256 open native files are managed. By using session identifiers tied to open files internally, the maximum
number of open files per session is limited to 32. When files are opened and closed, an automatic cleanup for
orphanded session identifiers removes left over open files. Since open files are tied to sessions a natural isolation
between open files and foreign sessions is achieved.

Native file names containing forward or backward slashes, colons, vertical bars, or tilde characters are not mapped into
the OPC/UA address space.

Methods implemented for FileType

UInt32 Open (Byte mode)

Returns an integer handle for the open file. Mode is a bitmask with bits O=read, 1=write, 2=truncate,
4=append.

void Close (UInt32 handle)

Handle is an integer handle of an open file which is to be closed.
ByteString Read (UInt32 handle, Int32 length)

Handle is an integer handle of an open file from which up to length bytes are to be read.
void Write (UInt32 handle, ByteString data)

Handle is an integer handle of an open file to which data is to be written.
UInt64 GetPosition (UInt32 handle)

Handle is an integer handle of an open file for which the current file position is to be returned.
void SetPosition (UInt32 handle, UInt64 pos)

Handle is an integer handle of an open file whose file position is to be set to pos.
Properties implemented for FileType
UInt64 Size

The actual size of the file in bytes.

UIntl6 OpenCount

How many open file handles exist for the file.

Boolean Writable
True when the file is writable.
Boolean UserWritable

True when the file is writable by the user.
Methods implemented for FileDirectoryType

NodeId CreateDirectory (String name)
Name is the name of the new directory to be created.
UInt32 CreateFile (String name, Boolean keepOpen)

Name is the name of the new file to be created. If keepOpen is true, the file is opened for reading and writing
and its handle returned.

void Delete (NodeId toDelete)
ToDelete is the node identifier of the file or directory to be deleted.
NodeId MoveOrCopy (NodeId src, NodeId dst, Boolean copy, String name)
Src is the source file or directory, dst the destination directory. If copy is true, a copy operation is to be

carried out. Name is the name of the new file or directory. Leave it empty for move operations. In all cases
the node identifier of the resulting object is returned.

Non-standard FileDirectory methods available on toplevel node

void CloseAll (void)
Closes all open file handles unconditionally.
void Rescan (void)

Performs identical operation of the opcua::fsrescan command.
Error reporting

Exceptions of method calls are reported as non-zero status codes, e.g. BADINVALIDARGUMENT (0x80ab0000).

ST
T n

™)
1/ topcua::isqimodel

opcua::sqlmodel

Name

opcua::sqlmodel - SQLite based address space models for topcua
Synopsis

package require topcua::sqlmodel
opcua::sqlmodel::export handle ...
opcua::sqlmodel::import handle ...
opcua::sqlmodel: :nsOfull handle
opcua::sqlmodel: :mkspecsdb dbname ...
opcua::sqlmodel: :loadspec handle name ...
opcua::sqlmodel: :listspecs ?dbname?
opcua::sqlmodel::getunece ?dbname?

Description

These commands provide several operations to deal with an OPC/UA address space using SQLite as a storage
backend. Additional commands allow for loading companion specs in compressed XML format from a central per-user
database.

opcua::sglmodel::export handle -file name

Exports the OPC/UA address space of handle to the SQLite database name. The database file is created,
temporarily opened, written, and finally closed.

opcua::sqlmodel::export handle -db db ?-schema schema?

Exports the OPC/UA address space of handle to the SQLite database handle db which must refer to an
open, writable SQLite database. Optional schema is the table name prefix in case an attached database
below db shall be written.

opcua::sqlmodel::export handle -data varname
Exports the OPC/UA address space of handle to variable varname as a serialization of an SQLite database.
opcua::sqglmodel::export handle -chan chan

Exports the OPC/UA address space of handle to an open and writable channel chan which is written with a
serialization of an SQLite database.

opcua::sglmodel::import handle -file name

Imports into the OPC/UA address space of handle from the SQLite database name. Only non-existing
nodes, references, and data type information is imported. The database file is temporarily opened, read,
and finally closed.

opcua::sglmodel::import handle -db db ?-schema schema?

Imports into the OPC/UA address space of handle from the SQLite database handle db which must refer to
an opened, readable SQLite database. Optional schema is the table name prefix in case an attached
database below db shall be used for the import. Only non-existing nodes, references, and datatype
information is imported.

opcua::sqglmodel::import handle -data value
Imports into the OPC/UA address space of handle from a serialized SQLite database in value.
opcua::sglmodel::import handle -chan chan

Imports into the OPC/UA address space of handle from a serialized SQLite database which is read form the
open and readable channel chan.

opcua::sqlmodel: :nsOfull handle

Loads full namespace zero into handle from a local database file ns0.db.gz which must be located in the
directory where this package has been installed.

opcua::sqlmodel: :mkspecsdb dbname ?tag?

Tries to create a database of OPC/UA companion specs into dbname. The XML nodeset data is obtained
from a ZIP which is downloaded from github. tag is the git tag, latest is the default tag. The database is

space optimized and has the tables Models, Requires, and UNECE which provide meta information of the
companion specs and the corresponding XML nodeset data in gzip format.

opcua::sqlmodel::loadspec handle name ?dbname?

Looks up the companion spec name in the database dbname or if dbname is omitted in

$::env(HOME) /uaspecs.db and loads the corresponding XML into handle which must refer to a server
object. name may be given as URL or as short name, e.g. DI. The loading process inspects both the
current server address space and the database and tries to resolve required companion specs
automatically.

opcua::sqglmodel::listspecs ?dbname?

List companion specs in the database dbname or if dbname is omitted in $::env(HOME) /uaspecs.db. The
result is a list of alternating short names and URLs.

opcua::sqlmodel: :getunece ?dbname?

Return UNECE information from database dbname or if dbname is omitted from $::env(HOME) /uaspecs.db
as list of alternating UNECE code, unit identifier, display name, and description.

Database schema for OPC/UA address space
In contrast to XML models the SQL data model is a full description of the address space, i.e. always includes all

namespaces starting from zero. The import process initially examines the current state of the address space and adds
only those nodes from the SQL model which are not existing yet.

Marmespaces.ndex can be
part of Nodes.Nodeld
and Modes BrowseMName

I

J°

References

Nodeld INTEGER

Source INTEGER

Target INTEGER
IsForward INTEGER higT

r—
1

StructureFields
HOT

Key INTEGER a1
DataTypeDescription INTEGER. 351
MName VARCHAR ot

Namespaces

— # Index INTEGER i1
URL VARCHAR 5T

Nodes

ROWID INTEGER 21

Nodeld VARCHAR et
MNodeClass INTEGER a1
BrowseName VARCHAR T
DisplayName INTEGER 21
Description INTEGER
WriteMask INTEGER ;57
UsenhriteMask INTEGER 5T
IsAbstract INTEGER
Symmetric INTEGER
InversehName INTEGER
ContainsMoLoops INTEGER
EventMotifier INTEGER
Value TEXT
Parentld INTEGER
Referenceld INTEGER
ReferenceTypeld INTEGER
DataType INTEGER
ValueRank INTEGER
ArrayDimensions VARCHAR
Accesslevel INTEGER
UserAccesslevel INTEGER
MinimumSamplinginterval DOUBLE
Historizing INTEGER
Executable INTEGER
UserExecutable INTEGER
DataTypeDefinition INTEGER
RolePermissions INTEGER
UserRolePermissions INTEGER
AccessRestrictions INTEGER
AccesslevelEx INTEGER

HOT

NodeClasses

%A—w # Key INTEGER 51
Name VARCHAR 551

LocalizedTexts

P
B # Key INTEGER a1
Locale VARCHAR 451
Text VARCHAR a1
DataTypeDescriptions

MNOT
MHULL

DefaultEncodingld INTEGER
%—D—H- BaseDataType INTEGER
StructureType INTEGER

H—E—hé # Key INTEGER

HOT
MULL

Description INTEGER

C
DataType INTEGER
1
ValueRank INTEGER a1 ' G
ArrayDimensions VARCHAR
MaxStringLength INTEGER 151 } =
|sOptional INTEGER ;iaT
[A [[D AN [G [N
Nodes.NodeClass Nodes.DataTypeDefinition StructureFields.Description
- NodeClasses . Key — DataTypeDescriptions.Key — LocalizedTexts Key
[B 8 [E &N [H [
Modes.DisplayMName DataTypeDescriptions BaseDataType StructureFields.DataType
Nodes.Description DataTypeDescriptions.DefaultEncodingld - MNodes . ROWID
MNodes.InverseName - MNodes ROWID \
— LocalizedTexts Key .
[| b
[= [N
! C SY StructureFields.DataTypeDescription References.Source

Modes.Parentld

Modes .Referenceld
Modes .ReferenceTypeld
Modes.DataType

- Nodes.ROWID

CREATE TABLE Nodes (

NodeId VARCHAR PRIMARY KEY NOT NULL,
NodeClass INTEGER NOT NULL DEFAULT O, --

BrowseName VARCHAR NOT NULL,

DisplayName INTEGER NOT NULL DEFAULT O, --

Description INTEGER,

WriteMask INTEGER NOT NULL,
UserWriteMask INTEGER NOT NULL,
IsAbstract INTEGER,

—+ DataTypeDescriptions Key

ref to NodeClasses

ref to LocalizedTexts
ref to LocalizedTexts

References Target

‘ References Modeld
— Nodes . ROWID

Symmetric INTEGER,

InverseName INTEGER, -- ref to LocalizedTexts
ContainsNoLoops INTEGER,

EventNotifier INTEGER,

Value TEXT,

ParentId INTEGER, -- ROWID of Nodes
ReferenceId INTEGER, -- ROWID of Nodes
ReferenceTypeId INTEGER, -- ROWID of Nodes
DataType INTEGER, -- ROWID of Nodes

ValueRank INTEGER,
ArrayDimensions VARCHAR,
AccesslLevel INTEGER,
UserAccessLevel INTEGER,
MinimumSamplingInterval DOUBLE,
Historizing INTEGER,
Executable INTEGER,
UserExecutable INTEGER,
DataTypeDefinition INTEGER, -- ref to DataTypeDescriptions
RolePermissions INTEGER,
UserRolePermissions INTEGER,
AccessRestrictions INTEGER,
AccessLevelEx INTEGER

)5

CREATE TABLE LocalizedTexts(
"Key" INTEGER NOT NULL,
Locale VARCHAR NOT NULL DEFAULT "",
Text VARCHAR NOT NULL,
PRIMARY KEY("Key", Locale)
)5

CREATE TABLE NodeClasses (
"Key" INTEGER PRIMARY KEY NOT NULL,
Name VARCHAR NOT NULL

)3

CREATE TABLE DataTypeDescriptions(
"Key" INTEGER PRIMARY KEY NOT NULL,
DefaultEncodingId INTEGER, -- ref to Nodes
BaseDataType INTEGER, -- ref to Nodes
StructureType INTEGER NOT NULL

D5

CREATE TABLE StructureFields(
"Key" INTEGER PRIMARY KEY NOT NULL,

DataTypeDescription INTEGER NOT NULL, -- ref to DataTypeDescriptions
Name VARCHAR NOT NULL,

Description INTEGER, -- ref to LocalizedTexts
DataType INTEGER, -- ref to Nodes

ValueRank INTEGER NOT NULL,
ArrayDimensions VARCHAR,
MaxStringLength INTEGER NOT NULL DEFAULT O,
IsOptional INTEGER NOT NULL DEFAULT 0
)3

CREATE UNIQUE INDEX StructureFieldsIndexl
ON StructureFields(DataTypeDescription, Name);

CREATE TABLE "References"(

NodeId INTEGER, -- ref to Nodes
Source INTEGER, -- ref to Nodes
Target INTEGER, -- ref to Nodes

IsForward INTEGER NOT NULL DEFAULT 1,
PRIMARY KEY(NodeId, Source, Target, IsForward)
)5

CREATE TABLE Namespaces(
"Index" INTEGER PRIMARY KEY NOT NULL,
URL VARCHAR NOT NULL

)5

Database schema for Companion Specs etc.

CREATE TABLE Models (
Model VARCHAR NOT NULL, -- URI
Name VARCHAR UNIQUE NOT NULL, -- short name
Version VARCHAR DEFAULT '',
PublicationDate VARCHAR DEFAULT '',
XML BLOB NOT NULL, -- gzip compressed
PRIMARY KEY (Model)

)5

CREATE TABLE Requires(

Model VARCHAR NOT NULL, -- URI
RequiredModel VARCHAR NOT NULL,
RequiredVersion VARCHAR DEFAULT '',
RequiredPublicationDate VARCHAR DEFAULT '',
PRIMARY KEY (Model, RequiredModel)

);

CREATE TABLE UNECE (
UNECECode VARCHAR NOT NULL,
UnitId VARCHAR NOT NULL,
DisplayName VARCHAR NOT NULL,
Description VARCHAR NOT NULL,
PRIMARY KEY (UNECEcode)

e
Y

2/ undroidwish

undroidwish
AndroWish sans the borg,
a project just for pun. ‘

Experimental. This is a single-file Tcl/Tk binary for Windows (32 bit, optional 64 bit) and Linux using parts of the
AndroWish source tree, in particular the ZIP virtual file system and the SDL/AGG/freetype based X11 emulation for
rendering. So far it is a proof of concept which eventually can be extended to run on another fruity smartphone
platform. It is built by executing platform dependent shell scripts which are available for Windows, Linux, and other
platforms. Ready-made binaries for 32 and 64 bit Windows and Intel Linux are listed on the Downloads page. It is
possible to build undroidwish on Debian platforms with ARM processors like the Raspberry Pi or the Beaglebone.

Warning! undroidwish.exe is a Windows 32 bit binary which like other nicely playing portable apps does not write to
the registry or otherwise modifies the system. But running it on your Windows PC is at your own risk. It is believed to
be a CAREFUL (Click And Run Executable For Unplanned Leisure) thing. Although in the first place it might look like Tk
in an X11 server, it provides all the benefits of the underlying AGG/SDL2/freetype based X11 emulation, i.e. anti-
aliased rendering of lines, circles, and fonts. It even allows to smoothly zoom the Tk root window by using the mouse
wheel combined with the control key.

Wayland. Another build script is provided which allows building undroidwish with the SDL2 Wayland video driver. This
is partially tested on the GNOME based Fedora 26-29 Workstation, Debian 9 "Stretch", and CentOS 7.5. As of 2018-
02-16 this variant is built with the KMSDRM SDL2 video driver enabled, which allows to run from a console without
requiring any display manager infrastructure, provided that the Linux system has decent graphics hardware allowing
for kernel mode setting and direct render mode.

FreeBSD and OpenBSD. These are very similar to the Linux version (including almost all extensions) but only
partially tested on FreeBSD-11 on x86 processors and OpenBSD-6.2 on amd64 processors.

OpenlIndiana Hipster (based on illumos, based on SunOS 5.11). As for FreeBSD with many extensions but only
partially tested in a 32 bit enviroment.

MacOS. Alpha versions are available since 2017-09-01, but are only partially tested on MacOS 10.11 (El Capitan) and
10.13 (High Sierra).

Haiku. Partial support for the Haiku operating system is now available thanks to SDL2's video driver architecture. This
is still highly experimental.

There are Tk ports
one of them is undroidwish
which runs on Haiku

Raspberry Pi. A Raspberry specific video driver called RPI is available in SDL2 which provides a similar feature set as
the KMSDRM driver, i.e. allows to run undroidwish in frame buffer mode. When built for/on the Raspberry this driver is
turned on by default, provided a recent Debian 9 (Raspbian) is used as build environment.

jsmpeg Video Driver. This is a special video driver which is described further in jsmpeg SDL Video Driver. It allows to
direct the undroidwish display to a page in a modern web browswer, e.g. Firefox, Safari, or Chrome. The feature is
available starting with the "Eppur si muove (2019-06-22)" release in most Linux, Windows, and MacOSX variants of
undroidwish.

All undroidwish variants have many of the advanced Tcl/Tk extensions from Batteries Included built in: tkpath,
tktreectrl, tkimg, and Canvas3D (which requires the display driver to support OpenGL 2.x or better). Tcl-only
extensions (without machine specific libraries) like tcllib, tksqlite, and bwidgets are included, too.

Some SDL specific command line options described in Beyond AndroWish can be used to control the size of the Tk
root window or its resizability. Other SDL specific things can be controlled at runtime using the sdltk command.

In order to start built in scripts directly (which were baked into the ZIP file system), the script to be executed must be
specified on the command line with its path within the embedded ZIP file system. Here are some examples.

The widget demo
undroidwish.exe builtin:sdl2tk8.6/demos/widget
TkSQLite, a graphical frontend to SQLite databases
undroidwish.exe builtin:tksqlite0.5.13/tksqlite.tcl

The PostScript tiger, a tkpath demo

http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/dir?name=undroid
http://www.androwish.org/download
http://www.raspberrypi.org
http://www.beagleboard.org
http://www.ch-werner.de/AndroWish/undroidwish-78555c39f0-win32.exe
http://wayland.freedesktop.org
http://getfedora.org
http://www.debian.org
http://www.centos.org
http://www.haiku-os.org

undroidwish.exe builtin:tkpath0.3.3/demos/tiger.tcl

Canvas3D demo, multiple threads

undroidwish.exe builtin:Canvas3dl.2.4/demo/threads.tcl

Canvas3D demo of VR rendering

undroidwish.exe builtin:Canvas3dl.2.4/demo/vr chick.tcl

Some shortcuts are provided as shown in the table below.

Script URL

builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:

builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:
builtin:

widget
tksqlite
imgdemo
tkpdemo
3ddemo
tkcon
treectrl
tktable
bugz
tkchat
zint

sdx
dungfork
vncviewer
notebook
tkmc
zinc-widget
tkinspect
stardom
helpviewer
mpksc
tixtour
tixwidgets
TDK/checker

TDK/compiler

TDK/debugger
TDK/inspector

TDK/tape
TDK/tclapp
TDK/tclsvc
TDK/vfse
tclline
ased

vtcl

cwsh
mktclsh
critcl
ckua
tdbcsh
LUCK
lucktui
tcled

TSB

fuse

Description

The widget demo

Graphical frontend to SQLite databases
Supported image formats

TkPath demo

Canvas3D demo

Tk console

Tree control widget demo

Table widget demo

See Tk Bugz in Tcl'ers Wiki, playable with a game pad
TkChat instant messaging application

Demo for ZINT barcode generator

SDX utility

Read-only /etc browser demo using tcl-augeas
Simple VNC viewer using tkvnc

Will Duquette's Notebook App

Simple clone of Midnight Commander from Tcl'ers wiki
Tkzinc demo

Tool to inspect other running Tk applications
Small XML browser/editor

tkhtml based help file viewer
mpexpr based calculator

Demo of tix widgets

Another demo of tix widgets

vanillawish only: Tcl Dev Kit checker

vanillawish only: Tcl Dev Kit compiler

vanillawish only: Tcl Dev Kit debugger

vanillawish only: Tcl Dev Kit inspector

vanillawish only: Tcl Dev Kit tape

vanillawish only: Tcl Dev Kit tclapp

vanillawish only: Tcl Dev Kit tclsvc

vanillawish only: Tcl Dev Kit vfse

vanillawish only:pure Tcl readline

vanillawish only (linux/windows): ASED Tcl/Tk IDE
vanillawish only (linux/windows): Visual Tcl
vanillatclsh only: Curses like Tk wish

vanillawish only (windows): extract a vanillatclsh
vanillawish (linux): stripped down version of critcl
vanillatclsh only: text mode OPC/UA server/browser
vanillatclsh only: text mode TDBC frontend
vanillawish: LUCK build system

vanillatclsh only: text mode LUCK build system/frontend
vanillatclsh only: text mode editor

vanillawish: Taygete Scrap Book, see Tcl'ers wiki
Export the ZIP content of the binary per FUSE mount

http://wiki.tcl.tk/4236
http://tkchat.tcl.tk
http://wiki.tcl.tk/3712

ST

- .
2/ usbserial command

usbserial command

Name

usbserial - transfer data over USB-serial converters

Synopsis

package require Usbserial
usbserial ?devicename?

Description

This command is used to transfer data over supported USB-serial converters (FTDI, CDC, Prolific, etc.), see this
reference. When no further argument is given to the usbserial command, a list of supported USB device names in
the form of zero or more /dev/bus/usb/MMM/NNN device special file names is returned. When the USB device name of a
supported USB-serial converter is given as argument, usbserial opens that USB device and returns a Tcl channel
handle for it. This handle may be used with fconfigure, gets, read, puts, and close. The options -mode, -ttycontrol,
and -ttystatus to fconfigure are supported by the channel. However, support for getting and/or setting control
lines varies between different USB-serial converter chips. Note, that similar to a normal POSIX tty device an USB device

name can be opened more than once simultaneously.

List of supported devices

Vendor Product Remarks

ID
0x10c4
0x10c4
0x10c4
0x10c4
0x067b
0x0403
0x0403
0x2341
0x2341
0x2341
0x2341
0x2341
0x2341
0x2341
0x2341
0x16c0
0x03eb
Ox1leaf
0x1a86
0x1a86
0x4348

ID

Oxea60
Oxea70
Oxea71
Oxea80
0x2303
0x0601
0x6015
0x0001
0x0010
0x003b
0x003f
0x0042
0x0043
0x0044
0x8036
0x0483
0x2044
0x0004
0x7523
0x5523
0x5523

CP2102

CP2105

CP2108

CP2110

Prolific PL2303

FTDI FT232R

FTDI FT231X

Arduino UNO

Arduino Mega 2560
Arduino Serial Adapter
Arduino Mega ADK
Arduino Mega 2560 R3
Arduino UNO R3
Arduino Mega ADK R3
Arduino Leonardo
TeensyDuino

ATMEL LUFA CDC Demo Application
Leaflabs Maple

CH 34x

CH 34x

CH 34x

http://code.google.com/p/usb-serial-for-android/

ST
T n

.-
B UVC
uvc command

Name

uvc - Interface to UVC cameras using libuvc

Synopsis

package require tcluvc
uvc option ?arg ...?
Description

This command provides several operations to interface UVC USB cameras using the infrastructure provided by libuvc
and libusb which is available on common Linux, FreeBSD, and MacOSX platforms and sometimes found working on
Android devices. option indicates what to carry out. Any unique abbreviation for option is acceptable. The valid
options are:

uvc close devid
Closes the device identified by devid which has been opened before using uvc open.
uvc convmode devid ?flag?

Reports or modifies the conversion mode for frames acquired from the opened device identified by devid.
Conversion mode 1 (on/true) performs frame format/color space conversions in the special UVC thread
which controls the USB transfers, mode 0 (off/false) does this instead in the normal Tcl event loop. The
default mode is 1.

uvc counters devid

Reports a three element list of statistic counters on the device identified by devid. The first element is the
number of video frames received, the second the number of video frames processed with uvc image, and
the third the number of video frames dropped.

uvc devices

Returns device information which can be used for uvc open as a list. Each device adds three elements to
the list: the first element is the device name as a colon separated string with two or three fields being
vendor ID (hexadecimal, Ox prefix is optional), product ID (hexadecimal, Ox prefix is optional), and
bus/device humbers separated by a dot; the second and third list elements are the vendor name, and the
product name. To open the device, its name (the colon separated string) must be used, the other two
items are available for presentation purposes. If udev support is available (Linux specific), this list is
refreshed on plug and unplug of devices. Otherwise, the list is a snapshot of suitable devices currently
connected.

uvc format devid ?index fps?

Returns or changes the frame format of the device identified by devid. The optional parameter index is an
integer number giving the index of the frame format returned in uvc listformats. The optional parameter
fps is the frame rate. If omitted, the currently active index and frame rate are returned. Changing the
frame format and rate is only possible if the device is not capturing images.

uvc greyshift devid ?shift?

Returns or sets the bit shift to be applied on grey images with a bit depth higher than 8 which are
captured from device devid. The default value is 4, which is suitable for greyscale cameras with 12 bit
resolution. The shift is not applied when the image subcommand retrieves raw byte array data.

uvc image devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. If photoImage is omitted, a
four element list is returned with the first element being the image width, the second the image height, the
third the number of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red,
green, blue order as a byte array. In this case an error is indicated by throwing an exception.

uvc info ?devid?

Returns information on open devices. If devid is specified, a list of two elements is returned, the first being
the device nameand the second the image callback command for that device, i.e. the same arguments
which were used on uvc open. If devid is omitted, a list of devids, i.e. all currently opened devices is
returned.

uvc

uvc

uvc

uvc

uvc

uvc

uvc

uvc

uvc

uvc

uvc

uvc

listen ?callback?

Retrieves or sets the callback command called on plug and unplug of devices. When a device is plugged or
unplugged that callback is invoked with two additional arguments: the type of event (add or remove) and
the device name (see uvc devices for the naming convention) which was added or removed. Only usable if
udev support is available.

listformats devid

Returns a dictionary keyed by a format index as integer with the values being another dictionary with
information about the frame size and rate of the respective frame format. The returned indices can be used
in in uvc format to switch to another frame size and/or to change the frame rate.

mbcopy bytearrayl bytearray2 mask

Copies the content of RGB byte array bytearray2 into the byte array bytearrayl using an RGB mask. Both
byte arrays must have identical length which must be a multiple of 3 (for RGB). The main purpose of this
command is to combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph)
the left camera image uses mask OxFFO000 (red component) and the right camera image uses mask
O0x00FFFF (green and blue components).

mcopy photol photo2 mask

Copies the content of the photo image photo2 into the photo image photol using an ARGB mask. Both
photo images must have identical width, height, and depth. The main purpose of this command is to
combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph) the left camera
image uses mask 0xO0FFO0000 (red component) and the right camera image uses mask 0xO0000FFFF (green
and blue components).

mirror devid ?x y?

Retrieves or sets flags to mirror captured images along the X or Y axis. Parameters x and y if specified
must be boolean values.

open devname callback

Opens the device with device name devname and establishes callback as command to be invoked on
captured images and finally returns a devid, i.e. a handle to further deal with the device. An additional
parameter is appended when callback is invoked: the devid of the device. For the format of devname see
the description of uvc devices.

orientation devid ?degrees?

Retrieves or sets the orientation of captured images regarding image rotation. degrees if specified must be
an integer number.

parameters devid ?key value ...?

Returns or changes device parameters for the device identified by devid given as key-value pairs, e.g.
brightness 100 will change the brightness setting of captured images to the device dependent value 100.
The command returns the current device parameters (after the potential change, when keys and values
were given) as a key-value list which can be processed with array set or dict get.

record devid frame width height bpp bytearray

Transcodes the frame described by width, height, bpp, and bytearray to JPEG and writes the result to the
recording file or stream. The recording must have been started with the -user option. An integer number is
returned as result: 1 indicates successful write, 0 no write due to frame rate constraints, and -1 an error
during the write.

record devid pause

Pauses recording to a file or stream.
record devid resume

Continues recording to a file or stream.
record devid start options ...

Starts recording to a file or stream. options control the data format, frames per second, and output
channel. The option -fps specifies the approximate rate in frames per second as a floating point number.
The option -chan specifies the channel to which the frames are written. This channel is detached from the
Tcl interpreter and controlled solely by the uvc record command. The -boundary option specifies a MIME
multipart boundary string and selects the MIME type multipart/x-mixed-replace suitable for streaming to
a web browser. The content type delivered to the browser is image/jpeg. If the -boundary option is
omitted, the output format is raw AVI and requires the channel to be seekable. The option -mjpeg forces
the recorded data to JPEG format, i.e. a transcoding to JPEG will be performed in software, if the device
doesn't already deliver a JPEG stream. The option -user turns off automatic frame write operations to the
recording file or stream when a frame is delivered from the device. Instead, uvc record devid frame must
be invoked in the callback function. The -user option implies -mjpeg.

uvc

uvc

uvc

uvc

uvc

uvc

record devid state

Returns the current recording state as stop, recording, pause, or error. The state error indicates a write
error on the file or stream. In this case no further frames will be written.

record devid stop
Finishes recording to a file or stream and closes the underlying channel.
start devid

Starts capturing images of the device identified by devid. When an image is ready, the callback command
set on uvc open is invoked.

state devid

Returns the image capture state of the device identified by devid. The result is the string capture if the
device is started, stopped if the device is stopped, or error if an error has been detected while image
capture was active.

stop devid
Stop capturing images of the device identified by devid.
tophoto width height bpp bytearray ?rot mirrorx mirrory?

Makes the RGB (bpp is 3) or gray (bpp is 1) byte array bytearray of width times height pixels into a Tk
photo image. Optionally, the data is rotated by rot degrees (possible values 0, 90, 180, 270) and/or
mirrored along the X and/or Y axis as specified by the boolean values mirrorx and mirrory.

The uvc command tries to lazy load Tk, thus allowing to use it from a normal tclsh. Only when a photo image is
required by a subcommand, Tk must be available and an attempt to load it is made.

-

N

B
7/ v4l2 command

v4l2 command

Name

v4l2 - Video For Linux Two interface

Synopsis

pack
v4l2

age require v4l2
option ?arg ...?

Description

This
opti

command provides several operations to interface Video For Linux Two in order to operate camera devices.
on indicates what to carry out on the Video For Linux Two subsystem. Any unique abbreviation for option is

acceptable. The valid options are:

v412

v412

v412

v412

v412

v412

v412

v412

v412

close devid
Closes the device identified by devid which has been opened before using v412 open.
counters devid

Reports a two element list of statistic counters on the device identified by devid. The first element is the
number of video frames received, the second the number of video frames processed with v412 greyimage
and v412 image. This information can be used to detect dropped frames.

devices

Returns a list of device names which can be used for v412 open. If udev support is available, this list is
refreshed on plug and unplug of devices. Otherwise it is made up of a snapshot of suitable file names in
the /dev directory.

greyimage devid mask ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. The image is converted to
greyscale if the capture format delivers color images, where maskcontrols the conversion. If it is empty or
RGB, all color components are used for conversion, otherwise for each letter R, G, and B the respective
color component is used. If more than one color component is used in the conversion, the weights are
0.299 for red, 0.587 for green, and 0.114 for blue. If photoImage is omitted, a four element list is returned
with the first element being the image width, the second the image height, the third the number of bytes
per pixel (one or two), and the last the image's pixel values with one or two bytes per grey pixel as a byte
array. In this case an error is indicated by throwing an exception.

greyshift devid ?shift?

Returns or sets the bit shift to be applied on grey images with a bit depth higher than 8 which are
captured from device devid. The default value is 4, which is suitable for greyscale cameras with 12 bit
resolution. The shift is not applied when the image subcommand retrieves raw byte array data.

image devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. If photoImage is omitted, a
four element list is returned with the first element being the image width, the second the image height, the
third the number of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red,
green, blue order as a byte array. In this case an error is indicated by throwing an exception.

info devid

Returns information on open devices. If devid is specified, a list of two elements is returned, the first being
the device name and the second the image callback command for that device, i.e. the same arguments
which were used on v412 open. If devid is omitted, a list of devids, i.e. all currently opened devices is
returned.

isloopback devname
Tests if devname is a loopback video device and returns true or false.
listen ?callback?

Retrieves or sets the callback command called on plug and unplug of devices. When a device is plugged or
unplugged that callback is invoked with two additional arguments: the type of event (add or remove) and

v412

v412

v412

v412

v412

v412

v4l12

v412

v412

v412

v412

v412

v412

the device name which was added or removed. Only useable if udev support is available.
loopback devname ?fourcc width height fps?

Retrieves or sets frame format and rate of the loopback video device devname. The parameter fourcc
specifies the format code, the image size is given as width times height pixels, and the frame rate fps as
fraction, i.e. 1/30, or as an integral number, both expressing frames per second. When no parameters are
specified, the current settings are returned as a four element list of fourcc, width, height, and fps. The
supported fourccs are BGR3, BGR4, RGB3, RGB4, GREY, YUYV, and YVYU.

mbcopy bytearrayl bytearray2 mask

Copies the content of RGB byte array bytearray2 into the byte array bytearrayl using an RGB mask. Both
byte arrays must have identical length which must be a multiple of 3 (for RGB). The main purpose of this
command is to combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph)
the left camera image uses mask O0x00FFO000 (red component) and the right camera image uses mask
0x0000FFFF (green and blue components).

mcopy photol photo2 mask

Copies the content of the photo image photo2 into the photo image photol using an ARGB mask. Both
photo images must have identical width, height, and depth. The main purpose of this command is to
combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph) the left camera
image uses mask 0xO0FF0000 (red component) and the right camera image uses mask 0xO0000FFFF (green
and blue components).

mirror devid ?x y?

Retrieves or sets flags to mirror captured images along the X or Y axis. Parameters x and y if specified
must be boolean values.

open devname callback

Opens the device with device name (UN*X pathname) devname and establishes callback as command to be
invoked on captured images and returns a devid, i.e. a handle to further deal with the device. Two
additional parameters are appended when callback is invoked: the first is the devid of the device, the
second a frame counter with initial value of zero based on the last start of image capture. If an error is
detected during image capture, the word error is used instead of the frame counter.

orientation devid ?degrees?

Retrieves or sets the orientation of captured images regarding image rotation. degrees if specified must be
an integer number.

parameters devid ?key value ...?

Returns or changes device parameters for the device identified by devid given as key-value pairs, e.g.
frame-size 320x240 will change the size of captured images to width 320 and height 240. The command
returns the current device parameters (after the potential change, when keys and values where given) as a
key-value list which can be processed with array set or dict get.

start devid

Starts capturing images of the device identified by devid. When an image is ready, the callback command
set on v412 open is invoked.

state devid

Returns the image capture state of the device identified by devid. The result is the string capture if the
device is started, stopped if the device is stopped, or error if an error has been detected while image
capture was active.

stop devid
Stop capturing images of the device identified by devid.
tophoto width height bpp bytearray ?rot mirrorx mirrory?

Makes the RGB (bpp is 3) or grey (bpp is 1) byte array bytearray of width times <height pixels into a Tk
photo image. Optionally, the data is rotated by rot degrees (possible values 0, 90, 180, 270) and/or
mirrored along the X and/or Y axis as specified by the boolean values mirrorx and mirrory.

write devid bytearray

Writes the RGB or grey bytes in bytearray to the device identified by devid which must be an open
loopback video device. The size of bytearray must match the video width/height of the loopback device.
Data is converted to YUYV if this is detected for the output path of the loopback device.

writephoto devid photo

Writes the content of the photo image photo to the device identified by devid which must be an open

loopback video device. The format written is either RGB4, YUYV, or GREY with the photo's dimensions
depending on which format is detected for the output path of the loopback device.

The v412 command tries to lazy load Tk, thus allowing to use it from a normal tclsh. Only when a photo image is
required by a subcommand, Tk must be available and an attempt to load it is made.

For the fourcc format codes in v412 loopback, consult the Linux header file /usr/include/linux/videodev2.h. The
most useful formats are RGB4 (8 bits per color in a 32 bit value per pixel), RGB3 (8 bits per color packed into 24

bits), and GREY (8 bits greyscale). Limited support for YUYV and YVYU (YUV 4:2:2 interleaved) exists for the v4l2
writephoto subcommand, too.

ST
T n

T
5 wmf command
wmf command

Name

wmf - Tcl interface to cameras using Windows Media Foundation

Synopsis

package require tclwmf
wmf option ?arg ...?
Description

This command provides several operations to interface cameras using the infrastructure provided by Windows Media
Foundation. option indicates what to carry out on the Windows Media Foundation subsystem. Any unique
abbreviation for option is acceptable. The valid options are:

wmf close devid
Closes the device identified by devid which has been opened before using wmf open.
wmf devices

Returns a list of device names which can be used for wnf open. Each device adds two elements to the list:
its symbolic link to be used in wnf open and its friendly name for presentation.

wmf format devid ?index?

Returns or changes the media format of the device identified by devid. The optional parameter index is an
integer number giving the index of the media format to be used as returned in wmf listformats. If
omitted, the currently active index is returned. Changing the media format is only possible if the device is
not capturing images.

wmf greyimage devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage

and returns non-zero on success or zero if no data transfer has taken place. The photo image is filled with
grey values. If photoImage is omitted, a four element list is returned with the first element being the image
width, the second the image height, the third the number of bytes per pixel, and the last the image's grey
values as a byte array. In this case an error is indicated by throwing an exception.

wmf image devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. If photoImage is omitted, a
four element list is returned with the first element being the image width, the second the image height, the
third the number of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red,
green, blue order as a byte array. In this case an error is indicated by throwing an exception.

wmf info devid

Returns information on open devices. If devid is specified, a list of two elements is returned, the first being
the device symbolic link and the second the image callback command for that device, i.e. the same
arguments which were used on wmf open. If devid is omitted, a list of devids, i.e. all currently opened
devices is returned.

wmf listformats devid

Returns a dictionary keyed by a media format index as integer with the values being another dictionary with
information about the frame size and rate of that media format. The respective index can be used in wnf
format.

wmf mbcopy bytearrayl bytearray2 mask

Copies the content of RGB byte array bytearray2 into the byte array bytearrayl using an RGB mask. Both
byte arrays must have identical length which must be a multiple of 3 (for RGB). The main purpose of this
command is to combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph)
the left camera image uses mask OxFFO000 (red component) and the right camera image uses mask
OXxO00FFFF (green and blue components).

wmf mcopy photol photo2 mask

Copies the content of the photo image photo2 into the photo image photol using an ARGB mask. Both
photo images must have identical width, height, and depth. The main purpose of this command is to

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

wmf

combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph) the left camera
image uses mask 0xO0FFO0000 (red component) and the right camera image uses mask 0xO000FFFF (green
and blue components).

mirror devid ?x y?

Retrieves or sets flags to mirror captured images along the X or Y axis. Parameters x and y if specified
must be boolean values.

open devname callback

Opens the device with device symbolic link devname and establishes callback as command to be invoked on
captured images and finally returns a devid, i.e. a handle to further deal with the device. Two additional
parameters are appended when callback is invoked: the devid of the device and the current capture state
as in wmf state. For the format of devname see the description of wmf devices.

orientation devid ?degrees?

Retrieves or sets the orientation of captured images regarding image rotation. degrees if specified must be
an integer number.

parameters devid ?key value ...?

Returns or changes device parameters for the device identified by devid given as key-value pairs, e.g.
brightness 100 will change the brightness setting of captured images to the device dependent value 100.
The command returns the current device parameters (after the potential change, when keys and values
were given) as a key-value list which can be processed with array set or dict get.

record devid frame width height bpp bytearray

Transcodes the frame described by width, height, bpp, and bytearray to JPEG and writes the result to the
recording file or stream. The recording must have been started with the -user option. The bits per pixel
parameter bpp must be 3. An integer number is returned as result: 1 indicates successful write, 0 no write
due to frame rate constraints, and -1 an error during the write.

record devid pause

Pauses recording to a file or stream.
record devid resume

Continues recording to a file or stream.
record devid start options ...

Starts recording to a file or stream. options control the data format, frames per second, and output
channel. The option -fps specifies the approximate rate in frames per second as a floating point number.
The option -chan specifies the channel to which the frames are written. This channel is detached from the
Tcl interpreter and controlled solely by the wmf record command. The -boundary option specifies a MIME
multipart boundary string and selects the MIME type multipart/x-mixed-replace suitable for streaming to
a web browser. The content type delivered to the browser is image/jpeg. If the -boundary option is
omitted, the output format is raw AVI and requires the channel to be seekable. The option -mjpeg forces
the recorded data to JPEG format, i.e. a transcoding to JPEG will be performed in software, if the device
doesn't already deliver a JPEG stream. The option -user turns off automatic frame write operations to the
recording file or stream when a frame is delivered from the device. Instead, wmf record devid frame must
be invoked in the callback function. The -user option implies -mjpeg.

record devid state

Returns the current recording state as stop, recording, pause, or error. The state error indicates a
write error on the file or stream. In this case no further frames will be written.

record devid stop
Finishes recording to a file or stream and closes the underlying channel.
start devid

Starts capturing images of the device identified by devid. When an image is ready, the callback command
set on wmf open is invoked.

state devid

Returns the image capture state of the device identified by devid. The result is the string capture if the
device is started, stopped if the device is stopped.

stop devid
Stop capturing images of the device identified by devid.
tophoto width height bpp bytearray ?rot mirrorx mirrory?

Makes the RGB (bpp is 3) or grey (bpp is 1) byte array bytearray of width times height pixels into a Tk
photo image. Optionally, the data is rotated by rot degrees (possible values 0, 90, 180, 270) and/or
mirrored along the X and/or Y axis as specified by the boolean values mirrorx and mirrory.

-

|
Y,
%,
-

N
b
|
i

TS
-~/ zbar command

zbar command

Name

zbar:

:* - interface to the ZBar barcode scanner library.

Synopsis

package require zbar

zbar::decode ?options?
zbar::async decode ?options?
zbar::symbol types
Description

These commands are used to scan barcodes off pixel image data.

zbar:

zbar:

zbar:

zbar:

zbar:

:decode photoEtc ?syms?

Scans the photo image photoEtc for barcode information. Alternatively, photoEtc can be a four element list
describing a greyscale or RGB image as a byte array with 8 bits per color component. The elements must
be width, height, number of color components and byte array of the image's pixels in this order. The
optional parameter syms must be a list of barcode symbologies to be scanned for. If omitted, all known
symbologies are tried. The command returns a three element list with the first element being the number
of milliseconds spent on decoding. The second element is the decoded symbology on success or an empty
string on failure, and the last element is the scan result as a byte array.

tasync _decode photoEtc callback ?syms?

Similar to zbar: :decode but the decoder is run as a background thread and the result is presented to a
callback procedure. It requires the Tcl core being built with thread support, and a running event loop
since the callback is invoked as an event or do-when-idle handler. Three additional arguments are passed
to callback: the number of milliseconds for decoding, the decoded symbology on success or an empty
string on failure, and the scan result as a byte array. The optional parameter syms has the same meaning
as in the zbar::decode command. Caution: only a single thread instance is supported per Tcl interpreter,
i.e. another asynchronous decode process can only be started when a previous decode process has
finished.

rasync_decode status

Returns the current state of the asynchronous decode thread as a string: stopped when no asynchronous
decode thread has been started, running when a asynchronous decode is in progress, and ready when the
next asynchronous decode can be started.

tasync_decode stop

Stops the background thread for asynchronous decoding if it has been implicitely started by a prior
zbar::async_decode. This can be useful to conserve memory resources.

:symbol types

Returns a list of supported symbologies of the scanner, currently EAN8, UPCE, ISBN10, UPCA, EAN13, ISBN13,
DATABAR, DATABAR EXP, 125, CODABAR, CODE39, QRCODE, CODE93, and CODE128.

ST

}/ ZIP virtual file system

ZIPFS

AndroWish comes with a special ZIP virtual file system which uses mmap(2) to read-only map a ZIP file (in this case
AndroWish's APK, i.e. its own installation package) into the process address space to speed up startup time and
subsequent read accesses. While this file system was designed primarily for AndroWish it can be used on other
platforms, too. Namely, undroidwish uses it on Windows and Linux to mount an archive of Tcl and native extensions
which is appended to the executable portion of its binary. It is implemented in the files zipfs.c and zipfs.h in
AndroWish's .../jni/tcl/generic folder and enabled in the Tcl core by the presence of the C preprocessor macro
ZIPFS IN TCL.

Low-level C interface

Tclzipfs Init(Tcl Interp *interp)

Performs one-time initialization of the file system and registers it process wide. Additionally, a package
named zipfs is provided and supplemental Tcl commands are created in the given interpreter.

Tclzipfs Mount(Tcl Interp *interp, const char *zipname, const char *mntpt, const char *passwd)

Mounts the ZIP archive file zipname on the mount point mntpt using the optional ZIP password passwd.
Errors during that process are reported in the interpreter interp. If zipname is a NULL pointer, information
on all currently mounted ZIP file systems is written into interp's result as a sequence of mount points and
ZIP file names.

Tclzipfs MountBuffer(Tcl Interp *interp, const char *mntpt, unsigned char *data, int length, int copy)

Mounts the ZIP archive contained in the memory buffer described by data and length on the mount point
mntpt. Depending on copy a private copy of this memory buffer is made and used for the mount operation.
Errors during that process are reported in the interpreter interp. If the mount operation succeeds, a
string of the form "memory <size> <id>"is left in interp’s result identifying the archive from the memory
buffer. This information is useful as zipname parameter in a later unmount operation. If mntpt is a NULL
pointer, information on all currently mounted ZIP file systems is written into interp's result as a sequence
of mount points and ZIP file names.

Tclzipfs Unmount(Tcl Interp *interp, const char *zipname)

Undoes the effect of Tclzipfs Mount(), i.e. unmounts the mounted ZIP archive file zipname. Errors are
reported in the interpreter interp.

Tcl commands

The zipfs package provides Tcl with the ability to mount the contents of a ZIP file as a virtual file system.
zipfs::exists filename

Return 1 if the given filename exists in the mounted zipfs and 0 if it does not.
zipfs::find dir

Recursively lists files including and below the directory dir. The result list consists of relative path names
starting from the given directory. This command is also used by the zipfs::mkzip and zipfs::mkimg
commands.

zipfs::info file

Return information about the given file in the mounted zipfs. The information consists of (1) the name of
the ZIP archive file that contains the file, (2) the size of the file after decompression, (3) the compressed
size of the file, and (4) the offset of the compressed data in the ZIP archive file.

Note: querying the mount point gives the start of ZIP data offset in (4), which can be used to truncate the
ZIP info off an executable.

Note: the file of a mounted ZIP archive appears as directory but can be opened and read like a regular file if
the mount process detected a non archive area in front of the ZIP archive, e.g. when the ZIP archive was
appended to an executable file. In this case that area can be read using the Tcl open and read commands
but file copy treats the mounted archive as a directory.

zipfs::list ?-glob|-regexp? ?pattern?

Lists files of any or all of the mounted ZIP archives. If pattern is omitted all files are listed. Otherwise
pattern is interpreted as a glob or regexp pattern and used to list only files matching this pattern.

zipfs::lmkimg outfile inlist ?password? ?infile?

http://www.androwish.org/index.html/wiki?name=AndroWish
http://en.wikipedia.org/wiki/Zip_%2528file_format%2529
http://www.androwish.org/index.html/artifact/02f3c2065ff5fa3e
http://www.androwish.org/index.html/artifact/87abbb588a4070ce

Like zipfs::mkimg but instead of an input directory inlist must be a list where the odd elements are the
original input file names as copied into the archive and the even elements their respective names within the
archive.

zipfs::lmkzip outfile inlist ?password?
Like zipfs::mkzip but instead of an input directory inlist must be a list where the odd elements are the
original input file names as copied into the archive and the even elements their respective names within the
archive.

zipfs::mkimg outfile indir ?strip? ?password? ?infile?

Create an image (potentially a new executable file) similar to zipfs::mkzip. If the infile parameter is
specified, this file is prepended in front of the ZIP archive, otherwise the file returned by

Tcl NameOfExecutable(3) (i.e. the executable file of the running process) is used. If the password
parameter is not empty, an obfuscated version of that password is placed between the image and ZIP
chunks of the output file and the contents of the ZIP chunk are protected with that password.

Caution: highly experimental, not usable on Android, only partially tested on Linux and Windows.
zipfs::mkkey password

For the clear text password argument an obfuscated string version is returned with the same format used
in the zipfs::mkimg command.

zipfs::mkzip outfile indir ?strip? ?password?

Creates a ZIP archive file named outfile from the contents of the input directory indir (contained regular
files only) with optional ZIP password password. While processing the files below indir the optional prefix
given in strip is stripped off the beginning of the respective file name.

Caution: the choice of the indir parameter (less the optional strip prefix) determines the later root name
of the archive's content.

zipfs::mount ?zipfile ?mountpoint? ?password?
zipfs::mount -file zipfile mountpoint ?password?
zipfs::mount -- zipfile mountpoint ?password?

This command mounts a ZIP archive file as a VFS. After this command executes, files contained in zipfile
will appear to Tcl to be regular files at the mount point.

In the first command form, with no mountpoint, returns the mount point for zipfile. With no zipfile,

return all zipfile/mount point pairs. If mountpoint is specified as an empty string, the mount point will be

the current directory. If password is specified, files from zipfile are decrypted using this password when
read.

zipfs::mount -data bytearray mountpoint

The data in bytearray must represent a ZIP archive which gets mounted on mountpoint. If the mount
operation succeeds, the result is a string of the form "memory <size> <id>" which can later be used as
zipfile parameter in an unmount operation.

zipfs::mount -chan channelld mountpoint

A ZIP archive is read from channel channelId and mounted on mountpoint. If the mount operation
succeeds, the result is a string of the form "memory <size> <id>" which can later be used as zipfile
parameter in an unmount operation.

zipfs::unmount zipfile
Unmounts the mounted ZIP archive file zipfile.
zipfs::unwrap ?filename?

If filename is the root of a mounted ZIP archive its content is unpacked to a local directory named
filename.vfs. This directory must not exists prior to the call. Otherwise, filename is temporarily mounted
before the unpack operation takes place and unmounted afterwards. If filename is omitted the result of
info nameofexecutable is used instead, i.e. the main ZIP archive of the running process is unpacked.

The commands described above are available as subcommands in the zipfs ensemble, i.e. zipfs list is equivalent to
zipfs::list.

zipfs as Tcl (and Tk) bootstrap file system

On the Android platform zipfs is used to boot Tcl/Tk from the APK by early mounting the APK file on the file system
root as seen by Tcl. Since nearly all relevant files within the APK are below the assets folder, this lets Tcl see the
directory /assets with its library directories, e.g. the /assets/tc18.6 directory with Tcl's library modules, encoding
tables etc. That relationship to /assets/tc18.6 is hard coded into the Tcl shared library and based on it all other
packaged library directories can be found during Tcl initialization.

For standalone apps a similar approach is chosen by hard coding the file /assets/app/main.tcl as the file to be
sourced (if present) right after Tcl's initialization. This allows for packaging Tcl based apps as an APK, see the
description in AndroWish SDK for instructions.

On other platforms (currently tested Linux and Windows) the initial mount of an embedded ZIP file system is done on
the executable itself, e.g. if /home/john/awish is the Tcl/Tk binary with an included ZIP file system, the Tcl library
directory of the file system when mounted becomes /home/john/awish/tc18.6. Similarly, built in application code will
be started from the file /home/john/awish/app/main.tcl if present. Additionally, the contents of the optional file
/home/john/awish/app/cmdline are appended to the command line before Tk is initialized and control is transferred to
the main.tcl script. This is useful to setup certain aspects of SDL, e.g. to start in full screen mode with or without
changed display resolution (see description of SDL startup options in Beyond AndroWish). Another hook is
/home/john/awish/app/icon.bmp which (if present) should be a Windows BMP 24 bit RGB bitmap file used as the icon
for the SDL root window.

On Windows platforms the drive letter of the base executable is prepended to the respective path names. For the
example above this means: C:\home\john\awish.exe is the binary, C:/home/john/awish.exe/tc18.6 becomes the Tcl
library directory, C:/home/john/awish.exe/app/main.tcl is the optional application script, and so on.

For a small sample script refer to Make minimal vanillawish binary.

Some delicate implementation details

For loading binary Tcl extensions (shared libraries) on certain platforms (Linux and FreeBSD) special handling is tried
to be carried out:

e on Linux, the memfd_create system call is used (if available) to make a memory backed file with the payload in
the /dev/shm namespace which finally is dlopen'ed to provide the shared library.

e on FreeBSD, there's fdlopen which allows a file descriptor to be treated as a shared library. Very similar to the
Linux approach, the file descriptor refers to a /dev/shm memory backed file which is primed with the contents
for the shared library from the ZIP archive.

For improving glob operations the ZIP virtual file system uses two hash based data structures: ZipEntry for regular
files and ZipDirEntry for directories which additionally contains a hash table to accelerate lookups in this directory. For
typical searches, this usually outperforms the native OS functions.

	Executive Summary
	Quick Links
	Features
	borg command
	Name
	Synopsis
	Description
	Bluetooth-Related Commands
	USB-Related Commands
	Network-Related Commands
	Desktop-Related Commands
	Notification-Related Commands
	Location-Related Commands
	System-Related Commands
	Sensor-Related Commands
	Android Content (shared databases)
	Cursors from Android Content queries
	Speech Recognition
	Telephone-Related Commands
	Broadcast
	Locale
	Camera-Related Commands
	NFC Related
	OS Environment
	Shared Preferences
	General

	Events
	borg activity Examples

	The AndroWish Software Development Kit
	Prerequisites
	AndroWish SDK Setup
	Directory Structure of the SDK
	External Tools
	Start the bones Tool
	Fraction 1: Package Selection
	Fraction 2: Add App Specific Files
	Fraction 3: The App Manifest
	Fraction 3a: Set App Icons
	Fraction 4: Build Options, Code Signing
	Fraction 5: APK Building
	Fraction 5a: Installing/Running the APK
	Happy Tcl'ing

	🖖
	Batteries Included
	ble command
	Name
	Synopsis
	Description
	Abbreviated UUIDs
	Event Data
	Example

	Starting point
	Build Androwish
	Get Source
	Try on Windows
	Try on OSX
	Try on CentOS 6
	OpenSuSE 13.2 64 bit
	ndk 10d install instructions (if 9d is not used as above)
	Error with ndk 10d and not with 9d (e.g. only when 10d is used)

	Customizing Androwish
	Delete not required packages
	Remove target x86
	Include own script
	Remove permissions not required for the app
	Change package name
	Start script directly
	Resources
	Remove fonts
	Release signing

	Building AndroWish
	Requirements
	Building and Running AndroWish

	Building vanillawish/undroidwish on Windows
	Tool: MSys2
	Tool: MinGW
	What if ... I instead rename the environment variables in the script to reflect the names of the binaries?

	Tool: CMake
	Tool: rsync
	Tool: make
	Tool: nasm
	Tool: Perl
	Tool: bc
	Tool: pkg-config
	What if ... I forget pgk-config?

	Tool: texinfo
	Starting the shell
	What if ... I run a shell in MinGW mode?

	dmtx command
	Name
	Synopsis
	Description

	Environment Variables
	Example Scripts And Screenshots
	jsmpeg SDL Video Driver
	HTTP AUTH
	Screen recording
	HTML Page Title
	A note about colors

	Limitations of AndroWish
	How to make a minimal vanillawish binary ...
	modbus command
	Name
	Synopsis
	Description
	Commands

	muzic command
	Name
	Synopsis
	Description

	List of AndroWish Releases
	rfcomm command
	Name
	Synopsis
	Description

	sdltk command
	Name
	Synopsis
	Description
	Touchscreen and Accelerometer Events
	Joystick Events
	Events related to the device screen
	Events related to the app life-cycle
	Accelerometer Example
	Pinch-to-zoom Example
	Disable Android keyboard input to a text widget

	snap7 command
	Name
	Synopsis
	Description
	Commands

	can command
	Name
	Synopsis
	Description
	Commands
	CAN Identifiers
	Channel Options
	Link Management
	Broadcast Manager Examples

	Test and debug strategies on AndroWish
	tkconclient
	opcua command
	Name
	Synopsis
	Description
	OPC/UA Ensemble
	Node Identifiers
	Qualified Names
	Localized Text
	Supported Data Types
	Monitor Callbacks
	Data Source Callbacks
	Method Callbacks
	Client Object And Event Loop
	Asynchronous Operations
	Prepared Read And Write Operations
	Client Example
	Server Object And Event Loop
	Server Example
	Defining Custom Data Structures

	opcua::filesystem
	Name
	Synopsis
	Description
	Methods implemented for FileType
	Properties implemented for FileType
	Methods implemented for FileDirectoryType
	Non-standard FileDirectory methods available on toplevel node
	Error reporting

	opcua::sqlmodel
	Name
	Synopsis
	Description
	Database schema for OPC/UA address space
	Database schema for Companion Specs etc.

	undroidwish
	usbserial command
	Name
	Synopsis
	Description
	List of supported devices

	uvc command
	Name
	Synopsis
	Description

	v4l2 command
	Name
	Synopsis
	Description

	wmf command
	Name
	Synopsis
	Description

	zbar command
	Name
	Synopsis
	Description

	ZIPFS
	Low-level C interface
	Tcl commands
	zipfs as Tcl (and Tk) bootstrap file system
	Some delicate implementation details

