Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Polished the source code for the multivariate regression a bit |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
98e5b7ce4d98fd56e9feb7aa8e25508b |
User & Date: | arjenmarkus 2007-03-05 20:46:39 |
Context
2007-03-07
| ||
22:28 | * compiler_peg_mecpu.tcl: Fixed typo in name of required package * pkgIndex.tcl: ('gasm;, was incorrectly 'gas'). Bumped to version 0.1.1. check-in: 2977d8c358 user: andreas_kupries tags: trunk | |
2007-03-05
| ||
20:46 | Polished the source code for the multivariate regression a bit check-in: 98e5b7ce4d user: arjenmarkus tags: trunk | |
2007-02-27
| ||
23:24 | * sets/s.c (from_any): Crashing bug in the Critcl implementation of 'struct::set'. Remembered the old object type X in the from_any conversion function, then converted to type 'list', and at the end tried to release the list using the freeintrep function of type X instead of type 'list'. Fixed by moving the code to remember the type after the conversion to a 'list'. check-in: 615847e351 user: andreas_kupries tags: trunk | |
Changes
Changes to modules/math/ChangeLog.
1 2 3 4 5 6 7 | 2007-02-27 Arjen Markus <arjenmarkus@users.sourceforge.net> * statistics.man : added description of multivariate linear regression procedures (contribution by Eric Kemp-Benedict) * statistics.tcl : sources "mvlinreg.tcl" now * mvlinreg.tcl : original source code from Eric, still needs some polishing (the test case needs to be integrated too) | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 | 2007-03-05 Arjen Markus <arjenmarkus@users.sourceforge.net> * mvlinreg.tcl : polished the source code (adding standard headers) Still to do: test cases 2007-02-27 Arjen Markus <arjenmarkus@users.sourceforge.net> * statistics.man : added description of multivariate linear regression procedures (contribution by Eric Kemp-Benedict) * statistics.tcl : sources "mvlinreg.tcl" now * mvlinreg.tcl : original source code from Eric, still needs some polishing (the test case needs to be integrated too) |
︙ | ︙ |
Changes to modules/math/mvlinreg.tcl.
|
| > > | | | < < | > > | > | | | | | < < | | < | | < < < | | > > > | > > > > > | > > | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | > | | | > | < < | > | | | | | > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | < > > | < < | > | | | | | > > > > > > > | | | | | | < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | # mvreglin.tcl -- # Addition to the statistics package # Copyright 2007 Eric Kemp-Benedict # Released under the BSD license under any terms # that allow it to be compatible with tcllib package require math::linearalgebra 1.0 package require math::statistics 0.4 # ::math::statistics -- # This file adds: # mvlinreg = Multivariate Linear Regression # namespace eval ::math::statistics { variable epsilon 1.0e-7 namespace export tstat mv-wls mv-ols namespace import -force \ ::math::linearalgebra::mkMatrix \ ::math::linearalgebra::mkVector \ ::math::linearalgebra::mkIdentity \ ::math::linearalgebra::mkDiagonal \ ::math::linearalgebra::getrow \ ::math::linearalgebra::setrow \ ::math::linearalgebra::getcol \ ::math::linearalgebra::setcol \ ::math::linearalgebra::getelem \ ::math::linearalgebra::setelem \ ::math::linearalgebra::dotproduct \ ::math::linearalgebra::matmul \ ::math::linearalgebra::add \ ::math::linearalgebra::sub \ ::math::linearalgebra::solveGauss \ ::math::linearalgebra::transpose } # tstats -- # Returns inverse of the single-tailed t distribution # given number of degrees of freedom & confidence # # Arguments: # n Number of degrees of freedom # alpha Confidence level (defaults to 0.05) # # Result: # Inverse of the t-distribution # # Note: # Iterates until result is within epsilon of the target. # It is possible that the iteration does not converge # proc ::math::statistics::tstat {n {alpha 0.05}} { variable epsilon variable tvals if [info exists tvals($n:$alpha)] { return $tvals($n:$alpha) } set deltat [expr {100 * $epsilon}] # For one-tailed distribution, set ptarg [expr {1.000 - $alpha/2.0}] set maxiter 100 # Initial value for t set t 2.0 set niter 0 while {abs([::math::statistics::cdf-students-t $n $t] - $ptarg) > $epsilon} { set pstar [::math::statistics::cdf-students-t $n $t] set pl [::math::statistics::cdf-students-t $n [expr {$t - $deltat}]] set ph [::math::statistics::cdf-students-t $n [expr {$t + $deltat}]] set t [expr {$t + 2.0 * $deltat * ($ptarg - $pstar)/($ph - $pl)}] incr niter if {$niter == $maxiter} { return -code error "::math::statistics::tstat: Did not converge after $niter iterations" } } # Cache the result to shorten the call in future set tvals($n:$alpha) $t return $t } # mv-wls -- # Weighted Least Squares # # Arguments: # args Alternating list of weights and observations # # Result: # List containing: # * R-squared # * Adjusted R-squared # * Coefficients of x's in fit # * Standard errors of the coefficients # * 95% confidence bounds for coefficients # # Note: # The observations are lists starting with the dependent variable y # and then the values of the independent variables (x1, x2, ...): # # mv-wls w [list y x's] w [list y x's] ... # proc ::math::statistics::mv-wls {args} { # Fill the matrices of x & y values, and weights # For n points, k coefficients # The number of points is equal to half the arguments (n weights, n points) set n [expr {[llength $args]/2}] set firstloop true # Sum up all y values to take an average set ysum 0 # Add up the weights set wtsum 0 # Count over rows (points) as you go set point 0 foreach {wt pt} $args { # Check inputs if {[string is double $wt] == 0} { return -code error "::math::statistics::mv-wls: Weight \"$wt\" is not a number" return {} } ## -- Check dimensions, initialize if $firstloop { # k = num of vals in pt = 1 + number of x's (because of constant) set k [llength $pt] if {$n <= [expr {$k + 1}]} { return -code error "::math::statistics::mv-wls: Too few degrees of freedom: $k variables but only $n points" return {} } set X [mkMatrix $n $k] set y [mkVector $n] set I_x [mkIdentity $k] set I_y [mkIdentity $n] set firstloop false } else { # Have to have same number of x's for all points if {$k != [llength $pt]} { return -code error "::math::statistics::mv-wls: Point \"$pt\" has wrong number of values (expected $k)" # Clean up return {} } } ## -- Extract values from set of points # Make a list of y values set yval [expr {double([lindex $pt 0])}] setelem y $point $yval set ysum [expr {$ysum + $wt * $yval}] set wtsum [expr {$wtsum + $wt}] # Add x-values to the x-matrix set xrow [lrange $pt 1 end] # Add the constant (value = 1.0) lappend xrow 1.0 setrow X $point $xrow # Create list of weights & square root of weights lappend w [expr {double($wt)}] lappend sqrtw [expr {sqrt(double($wt))}] incr point } set ymean [expr {double($ysum)/$wtsum}] set W [mkDiagonal $w] set sqrtW [mkDiagonal $sqrtw] # Calculate sum os square differences for x's for {set r 0} {$r < $k} {incr r} { set xsqrsum 0.0 set xmeansum 0.0 # Calculate sum of squared differences as: sum(x^2) - (sum x)^2/n for {set t 0} {$t < $n} {incr t} { set xval [getelem $X $t $r] set xmeansum [expr {$xmeansum + double($xval)}] set xsqrsum [expr {$xsqrsum + double($xval * $xval)}] } lappend xsqr [expr {$xsqrsum - $xmeansum * $xmeansum/$n}] } ## -- Set up the X'WX matrix set XtW [matmul [::math::linearalgebra::transpose $X] $W] set XtWX [matmul $XtW $X] # Invert set M [solveGauss $XtWX $I_x] set beta [matmul $M [matmul $XtW $y]] ### -- Residuals & R-squared # 1) Generate list of diagonals of the hat matrix set H [matmul $X [matmul $M $XtW]] for {set i 0} {$i < $n} {incr i} { lappend h_ii [getelem $H $i $i] } set R [matmul $sqrtW [matmul [sub $I_y $H] $y]] set yhat [matmul $H $y] # 2) Generate list of residuals, sum of squared residuals, r-squared set sstot 0.0 set ssreg 0.0 # Note: Relying on representation of Vector as a list for y, yhat foreach yval $y wt $w yhatval $yhat { set sstot [expr {$sstot + $wt * ($yval - $ymean) * ($yval - $ymean)}] set ssreg [expr {$ssreg + $wt * ($yhatval - $ymean) * ($yhatval - $ymean)}] } set r2 [expr {double($ssreg)/$sstot}] set adjr2 [expr {1.0 - (1.0 - $r2) * ($n - 1)/($n - $k)}] set sumsqresid [dotproduct $R $R] set s2 [expr {double($sumsqresid) / double($n - $k)}] ### -- Confidence intervals for coefficients set tvalue [tstat [expr {$n - $k}]] for {set i 0} {$i < $k} {incr i} { set stderr [expr {sqrt($s2 * [getelem $M $i $i])}] set mid [lindex $beta $i] lappend stderrs $stderr lappend confinterval [list [expr {$mid - $tvalue * $stderr}] [expr {$mid + $tvalue * $stderr}]] } return [list $r2 $adjr2 $beta $stderrs $confinterval] } # mv-ols -- # Ordinary Least Squares # # Arguments: # args List of observations # # Result: # List containing: # * R-squared # * Adjusted R-squared # * Coefficients of x's in fit # * Standard errors of the coefficients # * 95% confidence bounds for coefficients # # Note: # The observations are lists starting with the dependent variable y # and then the values of the independent variables (x1, x2, ...): # # mv-ols [list y x's] [list y x's] ... # proc ::math::statistics::mv-ols {args} { set newargs {} foreach pt $args { lappend newargs 1 $pt } return [eval wls $newargs] } |